Compiler Optimizations for Machine
Learning Workloads

Bojian Zheng
CSCD70 Compiler Optimization
2023/3/20

Announcements

e The lecture & tutorial next week
(i.e., 2023/03/27) will be
cancelled.

e Assignment 3 will be released
this Friday (i.e., 2023/03/24).
* 2 weeks will be given.

* Covers loop invariant code motion
and register allocation.

Agenda

0. Background: Deep Neural Networks
1. Machine Learning Systems

2. Memory Optimizations

When in doubt, ASK

Hypes in Machine Learning

Image Synthesis Chat Bot

Deep Neural Networks

* An important class of machine learning algorithms, usually
interpreted as graphs.

Graph visualization of ResNet-50, an image classification model

. LA LAl L oy L AL AL AL AL R R I (R (R Lottt bt oLy
R A TR & TR, TR, TR L+

Deep Neural Networks

* An important class of machine learning algorithms, usually
interpreted as graphs.

Graph visualization of ResNet-50, an image classification model

u
a4
ronv
W (64x64x3x3)
BatchNormalization
scale
ean

W (64x256x1x1)
BatchNormalization
W (256x64x1x1)

(=
o
2
@
N
©
(=
=
o
Z
7=
[3)
2
©
o

ale (256)

|
B (256)
mean (256)

var (256)

\

Graph = Nodes (i.e., Operators) + Edges (i.e., Tensors)
Tensor = NDArray = Multi-dimensional array

Deep Neural Networks

* 3 phases:

Deep Neural Network

' p|Cool Dog| = 100%

Lt g g bbb LA aL

Model parameters I/

@ Forward Pass

Deep Neural Networks

* 3 phases:

(Deew?_l\letzLH((_ 8_ETraining loss

Model parameters Ak

@ Forward Pass, @ Backward Pass

Deep Neural Networks

* 3 phases:

Deep Neural Network

al | T IR R Y T YR Foloob ool Bt boob oot Lot Lot Lot Lol O Y Y IR 0 I R T 0 1 Y I Y N Y Y 1 Y (R O O R 0 1 (R
Lol II‘-II-II Loethoty Lot Lot III-II-II A I T R U A BN {85 T TGN T LT Y M LT T T N LT M O M B 0 I|||”.”‘IIIII L BTN T | BT B RN T

Model parameters W/ Learning rate

VOE
@ Forward Pass, @ Backward Pass, and @ Weight Update W = W — aw

10

Deep Neural Networks

* 3 phases:

Deep Neural Network

| p|Cool Dog| = 100%

Model parameters I/

@ Forward Pass, @ Backward Pass, and € Weight Update
* Training: Learn the model parameters.

11

Deep Neural Networks

* 3 phases:

Deep Neural Network

| p|Cool Dog| = 100%

Model parameters I/

@ Forward Pass, @ Backward Pass, and € Weight Update
* Inference: Forward only to obtain the output labels.

12

Section Summary

* Deep neural networks: graphs of operators and tensors.

e 3 phases & 2 modes of operation:
* Training: Forward, Backward, and Weight Update
* Inference: Forward only

* These special properties call for domain-specific system design.

Machine Learning Systems

* Machine Learning Systems Overview
e TensorFlow & PyTorch: Declarative vs. Imperative
* Evolution of PyTorch Compiler Design

14

Machine Learning Systems Overview

Application
e PP .

e || 2
e
4 M» S
P SN N X “
4R =
:‘—f,,;ﬁr,‘l 3 { > 74 4

Image Classification

Machine Translation

Speech Recognition

15

Machine Learning Systems Overview

/ Application

% ~ 78 SN s | K > \ = > 4
,@My ‘] R 22 e O
Pl Al gl} SV

Image Classification

Machine Learning Systems Overview

Operator
(e.g., Convolution)

e

e Vendor Libraries ~N
4 CUDNN oo
cuBLAS y

— Hardware]
i NVIDIAGPU 000

17

Machine Learning Systems Overview

Python Programming Front-end

C++ Framework Core

Vendor APIs & Libraries g

=

Hardware Accelerators

NVIDIA GPUs Intel CPUs AMD GPUs

* Apply generically to many state-of-the-art systems.

Bridge the gap between
frontends and backends

thon Programming Front-end

C++ Framework Core

=

Vendor APIs & Libraries g

SSSSSSSSS
4

Hardware Accelerators

NVIDIA GPUs

Intel CPUs

* Apply generically to many state-of-the-art systems.

AMD GPUs

TensorFlow (V1)

* One of the first mature machine
learning frameworks that
support GPUs.

* Declarative programming
paradigm:
import tensorflow as tf

a = tf.placeholder()
b = tf.placeholder()
C a+ b
with tf.Session() as sess:
sess.run(
c, feed dict={a: 10, b: 32}
)

20

TensorFlow (V1)

* One of the first mature machine
learning frameworks that
support GPUs.

* Declarative programming
paradigm:
import tensorflow as tf

a = tf.placeholder()

b = tf.placeholder()

C a+b

with tf.Session() as sess:

sess.run(
c, feed dict={a: 10, b: 32}
)

21

TensorFlow (V1)

* One of the first mature machine
learning frameworks that
support GPUs.

* Declarative programming
paradigm:
import tensorflow as tf

a = tf.placeholder()
b = tf.placeholder()
C
with tf.Session() as sess:
sess.run(
c, feed dict={a: 10, b: 32}
)

a

a+ b 1'

22

TensorFlow (V1)

* One of the first mature machine
learning frameworks that
support GPUs.

* Declarative programming
paradigm
* Key Idea: Create a compilable
graph object in Python, an
interpreter environment.

(+) Holistic view of the model
makes many optimizations
easy to implement.

* TensorFlow Grappler Optimizer,
responsible for
* Arithmetic optimizations, e.g.,
constant folding, common

subexpression elimination, dead
node elimination, ...

 Memory allocations

TensorFlow (V1)

* One of the first mature machine
learning frameworks that
support GPUs.

* Declarative programming
paradigm
* Key Idea: Create a compilable
graph object in Python, an
interpreter environment.

(+) Holistic view of the model
makes many optimizations
easy to implement.

(—) Hard to program models with
dynamic control flows.

(—) Hard to debug intermediate
tensor values.

PyTorch

* One of the prevalent machine
learning frameworks that adopts
imperative programming.

(+) Easy to program and debug.
(—) No graphs, ...

25

PyTorch

* One of the prevalent machine
learning frameworks that adopts
imperative programming.

(+) Easy to program and debug.
(—) No graphs, ...

26

PyTorch

* One of the prevalent machine
learning frameworks that adopts
imperative programming.

(+) Easy to program and debug.
(—) No graphs, ...

27

TensorFlow & PyTorch

TensorFlow

* TensorFlow.Eager switched to
Imperative execution in 2018.

* Genl: torc
* Gen2: torc

* Gen3: torc

g

PyTorch

n.jit.script/trace
n.fx

n.Dynamo

28

PyTorch Gen1 Compiler

torch.jit.script torch.jit.trace
* An embedded language that * A tracer that records all the
moves outside of Python. evaluated operators.

import torch
from torch.nn import Module

class MyModel(Module):

model = MyModel()

scripted_model = \ traced model = torch.jit.trace(

torch.jit.script(model) model, (sample_input,)
)

29

PyTorch Gen1 Compiler

torch.jit.script torch.jit.trace
* An embedded language that * A tracer that records all the
moves outside of Python. evaluated operators

(+) Easy to deploy and convertto (—) Specialized to the provided
other formats. sample input.

(—) Limited operator coverage.

scripted_model = \ traced model = torch.jit.trace(

torch.jit.script(model) model, (sample_input,)
)

PyTorch Gen2 Compiler torch.fx

* Key Idea: Python-to-Python import torch
. from torch.nn import Module
transformation.

class MyModel(Module):
def forward(self, x, y):

* 3 main components: TetuIn x +y

* Symbolic tracing
model = MyModel()

traced model = \
torch.fx.symbolic_trace(module)

Feed in proxy inputs and record
operations on them

31

PyTorch Gen2 Compiler torch.fx

* Key Idea: Python-to-Python import torch
. from torch.nn import Module
transformation.

class MyModel(Module):
def forward(self, x, vy):

* 3 main components: TetuIn x +y

* Symbolic tracing
* Duck &-typed Python IR model = MyModel()

print (fx_model.graph)

graph():
%x : = placeholder[target=x]
. . %y : = placeholder[target=y]
Operate on thlS representatlon %ret : = call_function[target=op.add](
args=(%x, %y), kwargs={}
)

32

PyTorch Gen2 Compiler torch.fx

* Key Idea: Python-to-Python
transformation.

* 3 main components:
* Symbolic tracing
* Duck &-typed Python IR
* Python code generation

import torch
from torch.nn import Module

class MyModel(Module):
def forward(self, x, y):
return x + vy

model = MyModel()

fx_model.recompile()
print(fx.code)

def forward(self, x, y):
return x + vy

33

PyTorch Gen2 Compiler torch.fx

* Key Idea: Python-to-Python import torch
. from torch.nn import Module
transformation.

class MyModel(Module):
def forward(self, x, y):

* 3 main components: return x +y
* Symbolic tracing
* Duck &-typed Python IR model = MyModel()
 Python code generation fx_model = torch.fx.symbolic_trace(module)

print (fx_model.graph)
fx_model.recompile()

(+) The Python-like IR is easy to print(fx.code)
understand and manipulate.

34

PyTorch Gen3 Compiler torch.Dynamo

* Key ldea: torch.fx but supports

@
D
partial capture. hﬁ
\4

PyFrame(Object

\/
_PyEval_EvalFrameDefault

PyTorch Gen3 Compiler

* Key ldea: torch.fx but supports
partial capture.

import torch

def toy_example(a, b):
x = a / (torch.abs(a) + 1)
if b.sum() > 0:
b =b x -1
return x *x b

def my_pass(fx_module, sample_inputs):
pass

torch.Dynamo

[
| Je—
| foo.py
\V

PyFrameObject 2| PyCodeObject
\/
h torch.fx
Am
ik \ |
— N N 7
Patched Compiled
) —>{ Non-torch _l> p
PyFrameObject call | torch.fx
\/

with torch.dynamo.optimize(my_pass):

_PyEval_EvalFrameDefault

toy_example (
torch.randn(10), torch.randn(10)

)

36

PyTorch Gen3 Compiler

* Key ldea: torch.fx but supports
partial capture.

import torch

def toy_example(a, b):
x = a / (torch.abs(a) + 1)
if b.sum() > 0:
b =b x -1
return x *x b

def my_pass(fx_module, sample_inputs):
pass

torch.Dynamo

[
| Je—
| foo.py
\V

PyFrameObject 2| PyCodeObject
\/
h torch.fx
Am
ik \ |
— N N 7
Patched Compiled
) —>{ Non-torch _l> p
PyFrameObject call | torch.fx
\/

with torch.dynamo.optimize(my_pass):

_PyEval_EvalFrameDefault

toy_example (
torch.randn(10), torch.randn(10)

)

37

PyTorch Gen3 Compiler

* Key ldea: torch.fx but supports
partial capture.

import torch

def toy_example(a, b):
x = a / (torch.abs(a) + 1)
if .sum() > O:
b =b x =1
return x *x O

def my_pass(fx_module, sample_inputs):
pass

torch.Dynamo

[
| Je—
| foo.py
\V

PyFrameObject 2| PyCodeObject
\/
h torch.fx
Am
ik \ |
— N N 7
Patched Compiled
) —>{ Non-torch _l> p
PyFrameObject call | torch.fx
\/

with torch.dynamo.optimize(my_pass):

_PyEval_EvalFrameDefault

toy_example (
torch.randn(10), torch.randn(10)

)

38

PyTorch Gen3 Compiler

* Key ldea: torch.fx but supports
partial capture.

import torch

def toy_example(a, b):
x = a / (torch.abs(a) + 1)
if b.sum() > 0:
b =b x -1
return x *x b

def my_pass(fx_module, sample_inputs):
pass

torch.Dynamo

[
| Je—
| foo.py
\V

PyFrameObject 2| PyCodeObject
\/
h torch.fx
Am
ik \ |
— N N 7
Patched Compiled
) —>{ Non-torch _l> p
PyFrameObject call | torch.fx
\/

with torch.dynamo.optimize(my_pass):

_PyEval_EvalFrameDefault

toy_example (
torch.randn(10), torch.randn(10)

)

39

Section Summary

* MLSys Overview * Evolution of PyTorch Compilers
e Genl: Scripting and tracing

* Gen2: Ducked-type Python IR
S * Gen3: Partial capture

g i

I J

Python Programming Front-end

C++ Framework Core

o

Vendor APIs & Libraries

@ |2 el
i el
3

Hardware Accelerators

NVIDIA GPUs Intel CPUs AMD GPUs . . .
* Can jump out of those existing
* TensorFlow and PyTorch systems and create much more
* Declarative vs. Imperative powerful wheels!

* Please support the research work Hidet from my colleague Yaoyao:
www.github.com/hidet-org/hidet by staring the repository.

40

http://www.github.com/hidet-org/hidet

Memory Optimizations

* Background: Feature Maps

* Why memory matters?

e 3 optimization strategies = Selective Recomputation
* Impact of memory optimizations

41

Deep Neural Networks

* 3 phases:

Deep Neural Network

' p|Cool Dog| = 100%

Lt g g bbb LA aL

Model parameters I/

@ Forward Pass

42

Deep Neural Networks

* 3 phases:

(Deew?_l\letzLH((_ 8_ETraining loss

Model parameters Ak

@ Forward Pass, @ Backward Pass

43

Feature Maps

* Data entries that are stashed by the forward pass to compute the
backward gradients.

tanh :>(9_E_8Edy
ST e T Oy dx
(?f;(l— tanh? z)
(9E 9

—y°)

.

Feature Maps

* Data entries that are stashed by the forward pass to compute the

backward gradients.

Ct o M)

d
B Feature Maps

.

Storage In-Use

.“LT_'I

J

[Large temporal gap between usage]

I
Total Memory
Consumption

45

GPU Memory Consumption Profile of
A Machine Translation Workload

M Feature Maps

m Weights

m Workspace
Untrackable

[Feature maps dominate the GPU memory consumption]

46

Why memory matters?

* Hardware accelerators (e.g., NVIDIA GPUs) usually have limited
memory capacity (10-40 GB).

* Memory optimizations allow for

* Training for deeper neural networks (= better training quality).
* Higher training throughputs.

Memory = Training Throughputs

* When training, data is usually Throughput and memory consumption
batched for higher throughput of English-Vietnamese translation
and faster convergence. 4 onaNVIDIA 2080 Ti GPU

B 1500 12

= 11GBMemory = | £8
< 1000 < 8 U ~—
= 2 8
,é" 5007 —— Throughput 4 g g
%D ----- Memory 2 a
S ot - 1o

= 416 32 o4 128

=

Batch Size

Strategy #1. Virtualization

* Key Idea: Temporarily offload
data entries to the CPU side.

(+) Generic

(—) Intensive use of interconnect
(a valuable resource in
distributed systems)

* Hard to control the timing.

* Significant performance overhead
if data is not fetched back on time.

e Graph + System Information =
What data to offload & When to
issue the prefetch.

Strategy #2. Data Encoding

» Key Idea: Compress (usually
eliminate zeros).

Example feature
maps (darker
means — 0)

(+) Low performance overhead

(—) Model/layer specific

Strategy #3. Selective Recomputation

* Key Idea: Trade runtime with memory capacity.

r- [T ——W— W W — —

——— — my Total Memory Consumption |
(a B ; -

L!Feature Masz LT VothiovteResoyrGuriadiioption]

4 N
Storage In-Use

1234 B8

\ 4
Recomputation

* The recomputation path should only involve lightweight operators.

51

Strategy #3. Selective Recomputation

e Recomputing naively can end up 7 =tanh(X +Y)
with more memory.

(—) Feature maps T (N — 2N)
(—) Performance |

52

Strategy #3. Selective Recomputation

* Not considering the globa! graph 7 — ta,nh(XN Y;),i € [1,T)
structure could have us miss key
optimization opportunities.

e Eg, T*N - 2TN

— -~ —
Want to know the sweet spot where
doing recomputation is optimal
/#

Our approach:
Bidirectional Analysis

Bidirectional Analysis

Z =tanh(X +Y)

V¥ Backward Pass

* Breaks at compute-heavy layers
to partition the graph

* Constructs a recomputation path
that consists of nodes visited

54

Bidirectional Analysis

V¥ Backward Pass

* Breaks at compute-heavy layers
— = to partition the graph.
N <M s .
—J * Constructs a recomputation path
that consists of nodes visited.

A Forward Pass

 Remove operator nodes from the
recomputation path if

sizeof (FeatureMapsy,,,) < sizeof (FeatureMapsg,q4)

Z =tanh(X +Y)

55

Bidirectional Analysis

* Tensor sharing causes all the Z: = tanh(X +Y;),i € [1,T]
correlated operators to forward
propagate simultaneously: e
e N
sizeof (ZFeatureMapsNeW) < 71 Zo Z
B4 [T x N 4@ [TxN| 4@
sizeof (ZFeatureMapsOld) ”‘tanh h tanh |+ tanh
~v I tanh :

————
| T°N < 2TN
— 22y

56

Evaluation

=)

Validation BLEU Score

English-German translation with the same number of training steps

—— BaselineEe;’ (?44 —e— Mirror Bezv 6:42 —& Echo%‘:f?é

(O8]
-

N
N

S

[E—
o0

[E—
(\]

(o)

Target BLEU Score 28.0

P L 5[1.00 x ECHO achieves:
E > ll,ogx (+) Same training quality
| (4+) Faster convergence
»| 0.74 x .
(+) Fewer compute devices
0 100 200 300 400 500

Time (min)

57

Section Summary

* Why memory matters?
* Deeper neural networks
* Higher training throughputs

* 3 Optimization Strategies:
* Virtualization
* Data Encoding

* Selective Recomputation
(formulated as a bidirectional
analysis)

* Impact of memory optimizations
* Same training quality
* Faster convergence
* Fewer compute devices

Future Vision

Qualcomm SAPEON X220
Cloud Al 100

Compute power cannot be exploited
without a mighty compiler stack.

59

Compiler Optimizations for Machine
Learning Workloads

Bojian Zheng
CSCD70 Compiler Optimization
2023/3/20

