
Compiler Optimizations for Machine 
Learning Workloads

Bojian Zheng
CSCD70 Compiler Optimization

2023/3/20



Announcements

• The lecture & tutorial next week 
(i.e., 2023/03/27) will be 
cancelled.

• Assignment 3 will be released 
this Friday (i.e., 2023/03/24).
• 2 weeks will be given.
• Covers loop invariant code motion

and register allocation.

2



Agenda

0. Background: Deep Neural Networks

1. Machine Learning Systems

2. Memory Optimizations

3



When in doubt, ASK

4



Hypes in Machine Learning

Image Synthesis Chat Bot

5



Deep Neural Networks

• An important class of machine learning algorithms, usually 
interpreted as graphs.

6

Graph visualization of ResNet-50, an image classification model



Deep Neural Networks

• An important class of machine learning algorithms, usually 
interpreted as graphs.

7

Graph visualization of ResNet-50, an image classification model

Graph = Nodes (i.e., Operators) + Edges (i.e., Tensors)
Tensor = NDArray = Multi-dimensional array



Deep Neural Networks

• 3 phases:

❶ Forward Pass

8

Deep Neural Network

Model parameters W



Deep Neural Networks

• 3 phases:

❶ Forward Pass, ❷ Backward Pass

9

Deep Neural Network

Model parameters W

Training loss



Deep Neural Networks

• 3 phases:

❶ Forward Pass, ❷ Backward Pass, and ❸ Weight Update

10

Deep Neural Network

Model parameters W Learning rate



Deep Neural Networks

• 3 phases:

❶ Forward Pass, ❷ Backward Pass, and ❸ Weight Update

• Training: Learn the model parameters.

11

Deep Neural Network

Model parameters W



Deep Neural Networks

• 3 phases:

❶ Forward Pass, ❷ Backward Pass, and ❸ Weight Update

• Inference: Forward only to obtain the output labels.

12

Deep Neural Network

Model parameters W



Section Summary

• Deep neural networks: graphs of operators and tensors.

• 3 phases & 2 modes of operation:
• Training: Forward, Backward, and Weight Update
• Inference: Forward only

• These special properties call for domain-specific system design.

13



Machine Learning Systems
• Machine Learning Systems Overview
• TensorFlow & PyTorch: Declarative vs. Imperative
• Evolution of PyTorch Compiler Design

14



Machine Learning Systems Overview

15

Image Classification Machine Translation Speech Recognition

Application



Machine Learning Systems Overview

16

Image Classification

Application



Machine Learning Systems Overview

17

Operator
(e.g., Convolution)

Invoke

Vendor Libraries

cuBLAS

Hardware

NVIDIA GPU



Machine Learning Systems Overview

• Apply generically to many state-of-the-art systems.

18

Python Programming Front-end

C++ Framework Core

Vendor APIs & Libraries

Hardware Accelerators

NVIDIA GPUs Intel CPUs AMD GPUs



Machine Learning Systems Overview

• Apply generically to many state-of-the-art systems.

19

Python Programming Front-end

C++ Framework Core

Vendor APIs & Libraries

Hardware Accelerators

NVIDIA GPUs Intel CPUs AMD GPUs

Bridge the gap between 
frontends and backends

Sounds like LLVM?



TensorFlow (V1)

• One of the first mature machine 
learning frameworks that 
support GPUs.
• Declarative programming 

paradigm:
import tensorflow as tf

a = tf.placeholder()
b = tf.placeholder()
c = a + b
with tf.Session() as sess:

sess.run(
c, feed_dict={a: 10, b: 32}

) 20



TensorFlow (V1)

• One of the first mature machine 
learning frameworks that 
support GPUs.
• Declarative programming 

paradigm:
import tensorflow as tf

a = tf.placeholder()
b = tf.placeholder()
c = a + b
with tf.Session() as sess:

sess.run(
c, feed_dict={a: 10, b: 32}

) 21



TensorFlow (V1)

• One of the first mature machine 
learning frameworks that 
support GPUs.
• Declarative programming 

paradigm:
import tensorflow as tf

a = tf.placeholder()
b = tf.placeholder()
c = a + b
with tf.Session() as sess:

sess.run(
c, feed_dict={a: 10, b: 32}

) 22



TensorFlow (V1)

• One of the first mature machine 
learning frameworks that 
support GPUs.
• Declarative programming 

paradigm 
• Key Idea: Create a compilable

graph object in Python, an 
interpreter environment.

23

(+) Holistic view of the model 
makes many optimizations 
easy to implement.

• TensorFlow Grappler Optimizer, 
responsible for
• Arithmetic optimizations, e.g.,

constant folding, common 
subexpression elimination, dead 
node elimination, …

• Memory allocations
• …



TensorFlow (V1)

• One of the first mature machine 
learning frameworks that 
support GPUs.
• Declarative programming 

paradigm 
• Key Idea: Create a compilable

graph object in Python, an 
interpreter environment.

24

(+) Holistic view of the model 
makes many optimizations 
easy to implement.

(−) Hard to program models with 
dynamic control flows.

(−) Hard to debug intermediate 
tensor values.



PyTorch

• One of the prevalent machine 
learning frameworks that adopts 
imperative programming.

25

(+) Easy to program and debug.
(−) No graphs, …

Optimizations

Compiler Engineers



PyTorch

• One of the prevalent machine 
learning frameworks that adopts 
imperative programming.

26

(+) Easy to program and debug.
(−) No graphs, …

Deployments

Production Engineers



PyTorch

• One of the prevalent machine 
learning frameworks that adopts 
imperative programming.

27

(+) Easy to program and debug.
(−) No graphs, …

Performance

Chip Engineers



TensorFlow & PyTorch

TensorFlow
• TensorFlow.Eager switched to 

imperative execution in 2018.

PyTorch
• Gen1: torch.jit.script/trace
• Gen2: torch.fx
• Gen3: torch.Dynamo

28



PyTorch Gen1 Compiler

torch.jit.script
• An embedded language that 

moves outside of Python.

torch.jit.trace
• A tracer that records all the 

evaluated operators.

29

import torch
from torch.nn import Module

class MyModel(Module):
...

model = MyModel()
scripted_model = \

torch.jit.script(model)
traced_model = torch.jit.trace(

model, (sample_input,)
)



PyTorch Gen1 Compiler

torch.jit.script
• An embedded language that 

moves outside of Python.
(+) Easy to deploy and convert to 

other formats.
(−) Limited operator coverage.

torch.jit.trace
• A tracer that records all the 

evaluated operators
(−) Specialized to the provided 

sample input.

30

scripted_model = \
torch.jit.script(model)

traced_model = torch.jit.trace(
model, (sample_input,)

)



PyTorch Gen2 Compiler torch.fx

• Key Idea: Python-to-Python 
transformation.

• 3 main components:
• Symbolic tracing

31

import torch
from torch.nn import Module

class MyModel(Module):
def forward(self, x, y):

return x + y

model = MyModel()
traced_model = \

torch.fx.symbolic_trace(module)

Feed in proxy inputs and record 
operations on them



PyTorch Gen2 Compiler torch.fx

• Key Idea: Python-to-Python 
transformation.

• 3 main components:
• Symbolic tracing
• Duck 🦆-typed Python IR

32

import torch
from torch.nn import Module

class MyModel(Module):
def forward(self, x, y):

return x + y

model = MyModel()

print(fx_model.graph)
"""
graph():
%x : = placeholder[target=x]
%y : = placeholder[target=y]
%ret : = call_function[target=op.add](
args=(%x, %y), kwargs={}

)
"""

Operate on this representation



PyTorch Gen2 Compiler torch.fx

• Key Idea: Python-to-Python 
transformation.

• 3 main components:
• Symbolic tracing
• Duck 🦆-typed Python IR
• Python code generation

33

import torch
from torch.nn import Module

class MyModel(Module):
def forward(self, x, y):

return x + y

model = MyModel()

fx_model.recompile()
print(fx.code)
"""
def forward(self, x, y):
return x + y

"""



PyTorch Gen2 Compiler torch.fx

• Key Idea: Python-to-Python 
transformation.

• 3 main components:
• Symbolic tracing
• Duck 🦆-typed Python IR
• Python code generation

(+) The Python-like IR is easy to 
understand and manipulate.

34

import torch
from torch.nn import Module

class MyModel(Module):
def forward(self, x, y):

return x + y

model = MyModel()
fx_model = torch.fx.symbolic_trace(module)
print(fx_model.graph)
fx_model.recompile()
print(fx.code)



PyTorch Gen3 Compiler torch.Dynamo

• Key Idea: torch.fx but supports
partial capture.

35



PyTorch Gen3 Compiler torch.Dynamo

• Key Idea: torch.fx but supports 
partial capture.

36

import torch

def toy_example(a, b):
x = a / (torch.abs(a) + 1)
if b.sum() > 0:

b = b * -1
return x * b

def my_pass(fx_module, sample_inputs):
pass

with torch.dynamo.optimize(my_pass):
toy_example(

torch.randn(10), torch.randn(10)
)



PyTorch Gen3 Compiler torch.Dynamo

• Key Idea: torch.fx but supports 
partial capture.

37

import torch

def toy_example(a, b):
x = a / (torch.abs(a) + 1)
if b.sum() > 0:

b = b * -1
return x * b

def my_pass(fx_module, sample_inputs):
pass

with torch.dynamo.optimize(my_pass):
toy_example(

torch.randn(10), torch.randn(10)
)



PyTorch Gen3 Compiler torch.Dynamo

• Key Idea: torch.fx but supports 
partial capture.

38

import torch

def toy_example(a, b):
x = a / (torch.abs(a) + 1)
if b.sum() > 0:

b = b * -1
return x * b

def my_pass(fx_module, sample_inputs):
pass

with torch.dynamo.optimize(my_pass):
toy_example(

torch.randn(10), torch.randn(10)
)



PyTorch Gen3 Compiler torch.Dynamo

• Key Idea: torch.fx but supports 
partial capture.

39

import torch

def toy_example(a, b):
x = a / (torch.abs(a) + 1)
if b.sum() > 0:

b = b * -1
return x * b

def my_pass(fx_module, sample_inputs):
pass

with torch.dynamo.optimize(my_pass):
toy_example(

torch.randn(10), torch.randn(10)
)



Section Summary

• MLSys Overview

• TensorFlow and PyTorch
• Declarative vs. Imperative

• Evolution of PyTorch Compilers
• Gen1: Scripting and tracing
• Gen2: Ducked-type Python IR
• Gen3: Partial capture

• Can jump out of those existing 
systems and create much more 
powerful wheels!

40

Python Programming Front-end

C++ Framework Core

Vendor APIs & Libraries

Hardware Accelerators

NVIDIA GPUs Intel CPUs AMD GPUs

• Please support the research work Hidet from my colleague Yaoyao: 
www.github.com/hidet-org/hidet by staring the repository.

http://www.github.com/hidet-org/hidet


Memory Optimizations
• Background: Feature Maps
• Why memory matters?
• 3 optimization strategies ⇒ Selective Recomputation
• Impact of memory optimizations

41



Deep Neural Networks

• 3 phases:

❶ Forward Pass

42

Deep Neural Network

Model parameters W



Deep Neural Networks

• 3 phases:

❶ Forward Pass, ❷ Backward Pass

43

Deep Neural Network

Model parameters W

Training loss



• Data entries that are stashed by the forward pass to compute the 
backward gradients.

Feature Maps

44



• Data entries that are stashed by the forward pass to compute the 
backward gradients.

Feature Maps

45

Large temporal gap between usage

Storage In-Use
1 2 3 4

Total Memory 
Consumption

Feature Maps



46

Feature Maps
Weights
Workspace
Untrackable

𝟖𝟕%

GPU Memory Consumption Profile of 
A Machine Translation Workload

Feature maps dominate the GPU memory consumption



Why memory matters?

• Hardware accelerators (e.g., NVIDIA GPUs) usually have limited 
memory capacity (10-40 GB).

• Memory optimizations allow for
• Training for deeper neural networks (≈ better training quality).
• Higher training throughputs.

47



Memory → Training Throughputs

• When training, data is usually
batched for higher throughput 
and faster convergence.

48

11 GB Memory
Capacity

Throughput and memory consumption 
of English-Vietnamese translation

on a NVIDIA 2080 Ti GPU



Strategy #1. Virtualization

• Key Idea: Temporarily offload
data entries to the CPU side.

(+) Generic
(−) Intensive use of interconnect 

(a valuable resource in 
distributed systems)

• Hard to control the timing.
• Significant performance overhead 

if data is not fetched back on time.
• Graph + System Information ⇒

What data to offload & When to 
issue the prefetch. 49

PCIe



Strategy #2. Data Encoding

• Key Idea: Compress (usually 
eliminate zeros).

(+) Low performance overhead
(−) Model/layer specific

50

Example feature 
maps (darker 
means → 0)



Strategy #3. Selective Recomputation

• Key Idea: Trade runtime with memory capacity.

• The recomputation path should only involve lightweight operators.

51

Storage In-Use
	1 	2 	3 	4

& Total Memory Consumption

	'

Feature Maps

Recomputation Path

Storage In-Use
1

𝑻 Total Memory Consumption
without Recomputation

𝑇 − 3

Recomputation

2 3 4



Strategy #3. Selective Recomputation

52

• Recomputing naively can end up 
with more memory.

(−) Feature maps ↑ (𝑁 → 2𝑁) 
(−) Performance ↓

LOSE



Strategy #3. Selective Recomputation
• Not considering the global graph 

structure could have us miss key 
optimization opportunities.
• E.g., 𝑇𝟐𝑁 → 𝟐𝑇𝑁

53

Want to know the sweet spot where
doing recomputation is optimal

Our approach: 
Bidirectional Analysis



Bidirectional Analysis
▼Backward Pass
• Breaks at compute-heavy layers 

to partition the graph
• Constructs a recomputation path 

that consists of nodes visited

54Compute-Heavy Layers



Bidirectional Analysis
▼Backward Pass
• Breaks at compute-heavy layers 

to partition the graph.
• Constructs a recomputation path 

that consists of nodes visited.
▲Forward Pass
• Remove operator nodes from the 

recomputation path if

55

𝑁 ≤ 2𝑁𝑁 ≤ 𝑁



Bidirectional Analysis
• Tensor sharing causes all the 

correlated operators to forward 
propagate simultaneously:

56

𝑇"𝑁 ≰ 2𝑇𝑁



Evaluation

57

English-German translation with the same number of training steps

ECHO achieves:
(+) Same training quality
(+) Faster convergence
(+) Fewer compute devices

Be
tt
er



Section Summary

• Why memory matters?
• Deeper neural networks
• Higher training throughputs

• 3 Optimization Strategies:
• Virtualization
• Data Encoding
• Selective Recomputation 

(formulated as a bidirectional 
analysis)

• Impact of memory optimizations
• Same training quality
• Faster convergence
• Fewer compute devices

58



Future Vision

59

Google TPU AWS Trainium

Qualcomm
Cloud AI 100

SAPEON X220

Compute power cannot be exploited 
without a mighty compiler stack.



Compiler Optimizations for Machine 
Learning Workloads

Bojian Zheng
CSCD70 Compiler Optimization

2023/3/20


