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Announcements

• The lecture & tutorial next week 
(i.e., 2023/03/27) will be 
cancelled.

• Assignment 3 will be released 
this Friday (i.e., 2023/03/24).
• 2 weeks will be given.
• Covers loop invariant code motion

and register allocation.
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Agenda

0. Background: Deep Neural Networks

1. Machine Learning Systems

2. Memory Optimizations
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When in doubt, ASK
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Hypes in Machine Learning

Image Synthesis Chat Bot
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Deep Neural Networks

• An important class of machine learning algorithms, usually 
interpreted as graphs.
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Graph visualization of ResNet-50, an image classification model



Deep Neural Networks

• An important class of machine learning algorithms, usually 
interpreted as graphs.
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Graph visualization of ResNet-50, an image classification model

Graph = Nodes (i.e., Operators) + Edges (i.e., Tensors)
Tensor = NDArray = Multi-dimensional array



Deep Neural Networks

• 3 phases:

❶ Forward Pass
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Deep Neural Network

Model parameters W



Deep Neural Networks

• 3 phases:

❶ Forward Pass, ❷ Backward Pass
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Deep Neural Network

Model parameters W

Training loss



Deep Neural Networks

• 3 phases:

❶ Forward Pass, ❷ Backward Pass, and ❸ Weight Update
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Deep Neural Network

Model parameters W Learning rate



Deep Neural Networks

• 3 phases:

❶ Forward Pass, ❷ Backward Pass, and ❸ Weight Update

• Training: Learn the model parameters.
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Deep Neural Network

Model parameters W



Deep Neural Networks

• 3 phases:

❶ Forward Pass, ❷ Backward Pass, and ❸ Weight Update

• Inference: Forward only to obtain the output labels.
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Deep Neural Network

Model parameters W



Section Summary

• Deep neural networks: graphs of operators and tensors.

• 3 phases & 2 modes of operation:
• Training: Forward, Backward, and Weight Update
• Inference: Forward only

• These special properties call for domain-specific system design.
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Machine Learning Systems
• Machine Learning Systems Overview
• TensorFlow & PyTorch: Declarative vs. Imperative
• Evolution of PyTorch Compiler Design
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Machine Learning Systems Overview

15

Image Classification Machine Translation Speech Recognition

Application



Machine Learning Systems Overview
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Image Classification

Application



Machine Learning Systems Overview
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Operator
(e.g., Convolution)

Invoke

Vendor Libraries

cuBLAS

Hardware

NVIDIA GPU



Machine Learning Systems Overview

• Apply generically to many state-of-the-art systems.
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Python Programming Front-end

C++ Framework Core

Vendor APIs & Libraries

Hardware Accelerators

NVIDIA GPUs Intel CPUs AMD GPUs



Machine Learning Systems Overview

• Apply generically to many state-of-the-art systems.
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Python Programming Front-end

C++ Framework Core

Vendor APIs & Libraries

Hardware Accelerators

NVIDIA GPUs Intel CPUs AMD GPUs

Bridge the gap between 
frontends and backends

Sounds like LLVM?



TensorFlow (V1)

• One of the first mature machine 
learning frameworks that 
support GPUs.
• Declarative programming 

paradigm:
import tensorflow as tf

a = tf.placeholder()
b = tf.placeholder()
c = a + b
with tf.Session() as sess:

sess.run(
c, feed_dict={a: 10, b: 32}

) 20
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TensorFlow (V1)

• One of the first mature machine 
learning frameworks that 
support GPUs.
• Declarative programming 

paradigm 
• Key Idea: Create a compilable

graph object in Python, an 
interpreter environment.
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(+) Holistic view of the model 
makes many optimizations 
easy to implement.

• TensorFlow Grappler Optimizer, 
responsible for
• Arithmetic optimizations, e.g.,

constant folding, common 
subexpression elimination, dead 
node elimination, …

• Memory allocations
• …



TensorFlow (V1)

• One of the first mature machine 
learning frameworks that 
support GPUs.
• Declarative programming 

paradigm 
• Key Idea: Create a compilable

graph object in Python, an 
interpreter environment.
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(+) Holistic view of the model 
makes many optimizations 
easy to implement.

(−) Hard to program models with 
dynamic control flows.

(−) Hard to debug intermediate 
tensor values.



PyTorch

• One of the prevalent machine 
learning frameworks that adopts 
imperative programming.
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(+) Easy to program and debug.
(−) No graphs, …

Optimizations

Compiler Engineers



PyTorch

• One of the prevalent machine 
learning frameworks that adopts 
imperative programming.
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(+) Easy to program and debug.
(−) No graphs, …

Deployments

Production Engineers



PyTorch

• One of the prevalent machine 
learning frameworks that adopts 
imperative programming.
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(+) Easy to program and debug.
(−) No graphs, …

Performance

Chip Engineers



TensorFlow & PyTorch

TensorFlow
• TensorFlow.Eager switched to 

imperative execution in 2018.

PyTorch
• Gen1: torch.jit.script/trace
• Gen2: torch.fx
• Gen3: torch.Dynamo
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PyTorch Gen1 Compiler

torch.jit.script
• An embedded language that 

moves outside of Python.

torch.jit.trace
• A tracer that records all the 

evaluated operators.
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import torch
from torch.nn import Module

class MyModel(Module):
...

model = MyModel()
scripted_model = \

torch.jit.script(model)
traced_model = torch.jit.trace(

model, (sample_input,)
)



PyTorch Gen1 Compiler

torch.jit.script
• An embedded language that 

moves outside of Python.
(+) Easy to deploy and convert to 

other formats.
(−) Limited operator coverage.

torch.jit.trace
• A tracer that records all the 

evaluated operators
(−) Specialized to the provided 

sample input.
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scripted_model = \
torch.jit.script(model)

traced_model = torch.jit.trace(
model, (sample_input,)

)



PyTorch Gen2 Compiler torch.fx

• Key Idea: Python-to-Python 
transformation.

• 3 main components:
• Symbolic tracing
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import torch
from torch.nn import Module

class MyModel(Module):
def forward(self, x, y):

return x + y

model = MyModel()
traced_model = \

torch.fx.symbolic_trace(module)

Feed in proxy inputs and record 
operations on them



PyTorch Gen2 Compiler torch.fx

• Key Idea: Python-to-Python 
transformation.

• 3 main components:
• Symbolic tracing
• Duck 🦆-typed Python IR
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import torch
from torch.nn import Module

class MyModel(Module):
def forward(self, x, y):

return x + y

model = MyModel()

print(fx_model.graph)
"""
graph():
%x : = placeholder[target=x]
%y : = placeholder[target=y]
%ret : = call_function[target=op.add](
args=(%x, %y), kwargs={}

)
"""

Operate on this representation



PyTorch Gen2 Compiler torch.fx

• Key Idea: Python-to-Python 
transformation.

• 3 main components:
• Symbolic tracing
• Duck 🦆-typed Python IR
• Python code generation
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import torch
from torch.nn import Module

class MyModel(Module):
def forward(self, x, y):

return x + y

model = MyModel()

fx_model.recompile()
print(fx.code)
"""
def forward(self, x, y):
return x + y

"""



PyTorch Gen2 Compiler torch.fx

• Key Idea: Python-to-Python 
transformation.

• 3 main components:
• Symbolic tracing
• Duck 🦆-typed Python IR
• Python code generation

(+) The Python-like IR is easy to 
understand and manipulate.
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import torch
from torch.nn import Module

class MyModel(Module):
def forward(self, x, y):

return x + y

model = MyModel()
fx_model = torch.fx.symbolic_trace(module)
print(fx_model.graph)
fx_model.recompile()
print(fx.code)



PyTorch Gen3 Compiler torch.Dynamo

• Key Idea: torch.fx but supports
partial capture.
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PyTorch Gen3 Compiler torch.Dynamo

• Key Idea: torch.fx but supports 
partial capture.
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import torch

def toy_example(a, b):
x = a / (torch.abs(a) + 1)
if b.sum() > 0:

b = b * -1
return x * b

def my_pass(fx_module, sample_inputs):
pass

with torch.dynamo.optimize(my_pass):
toy_example(

torch.randn(10), torch.randn(10)
)



PyTorch Gen3 Compiler torch.Dynamo

• Key Idea: torch.fx but supports 
partial capture.
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PyTorch Gen3 Compiler torch.Dynamo

• Key Idea: torch.fx but supports 
partial capture.
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PyTorch Gen3 Compiler torch.Dynamo

• Key Idea: torch.fx but supports 
partial capture.
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Section Summary

• MLSys Overview

• TensorFlow and PyTorch
• Declarative vs. Imperative

• Evolution of PyTorch Compilers
• Gen1: Scripting and tracing
• Gen2: Ducked-type Python IR
• Gen3: Partial capture

• Can jump out of those existing 
systems and create much more 
powerful wheels!
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Python Programming Front-end

C++ Framework Core

Vendor APIs & Libraries

Hardware Accelerators

NVIDIA GPUs Intel CPUs AMD GPUs

• Please support the research work Hidet from my colleague Yaoyao: 
www.github.com/hidet-org/hidet by staring the repository.

http://www.github.com/hidet-org/hidet


Memory Optimizations
• Background: Feature Maps
• Why memory matters?
• 3 optimization strategies ⇒ Selective Recomputation
• Impact of memory optimizations
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Deep Neural Networks

• 3 phases:

❶ Forward Pass
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Deep Neural Network

Model parameters W



Deep Neural Networks

• 3 phases:

❶ Forward Pass, ❷ Backward Pass
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Deep Neural Network

Model parameters W

Training loss



• Data entries that are stashed by the forward pass to compute the 
backward gradients.

Feature Maps
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• Data entries that are stashed by the forward pass to compute the 
backward gradients.

Feature Maps
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Large temporal gap between usage

Storage In-Use
1 2 3 4

Total Memory 
Consumption

Feature Maps
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Feature Maps
Weights
Workspace
Untrackable

𝟖𝟕%

GPU Memory Consumption Profile of 
A Machine Translation Workload

Feature maps dominate the GPU memory consumption



Why memory matters?

• Hardware accelerators (e.g., NVIDIA GPUs) usually have limited 
memory capacity (10-40 GB).

• Memory optimizations allow for
• Training for deeper neural networks (≈ better training quality).
• Higher training throughputs.
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Memory → Training Throughputs

• When training, data is usually
batched for higher throughput 
and faster convergence.
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11 GB Memory
Capacity

Throughput and memory consumption 
of English-Vietnamese translation

on a NVIDIA 2080 Ti GPU



Strategy #1. Virtualization

• Key Idea: Temporarily offload
data entries to the CPU side.

(+) Generic
(−) Intensive use of interconnect 

(a valuable resource in 
distributed systems)

• Hard to control the timing.
• Significant performance overhead 

if data is not fetched back on time.
• Graph + System Information ⇒

What data to offload & When to 
issue the prefetch. 49

PCIe



Strategy #2. Data Encoding

• Key Idea: Compress (usually 
eliminate zeros).

(+) Low performance overhead
(−) Model/layer specific
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Example feature 
maps (darker 
means → 0)



Strategy #3. Selective Recomputation

• Key Idea: Trade runtime with memory capacity.

• The recomputation path should only involve lightweight operators.
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Storage In-Use
	1 	2 	3 	4

& Total Memory Consumption

	'

Feature Maps

Recomputation Path

Storage In-Use
1

𝑻 Total Memory Consumption
without Recomputation

𝑇 − 3

Recomputation

2 3 4



Strategy #3. Selective Recomputation
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• Recomputing naively can end up 
with more memory.

(−) Feature maps ↑ (𝑁 → 2𝑁) 
(−) Performance ↓

LOSE



Strategy #3. Selective Recomputation
• Not considering the global graph 

structure could have us miss key 
optimization opportunities.
• E.g., 𝑇𝟐𝑁 → 𝟐𝑇𝑁
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Want to know the sweet spot where
doing recomputation is optimal

Our approach: 
Bidirectional Analysis



Bidirectional Analysis
▼Backward Pass
• Breaks at compute-heavy layers 

to partition the graph
• Constructs a recomputation path 

that consists of nodes visited

54Compute-Heavy Layers



Bidirectional Analysis
▼Backward Pass
• Breaks at compute-heavy layers 

to partition the graph.
• Constructs a recomputation path 

that consists of nodes visited.
▲Forward Pass
• Remove operator nodes from the 

recomputation path if
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𝑁 ≤ 2𝑁𝑁 ≤ 𝑁



Bidirectional Analysis
• Tensor sharing causes all the 

correlated operators to forward 
propagate simultaneously:
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𝑇"𝑁 ≰ 2𝑇𝑁



Evaluation
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English-German translation with the same number of training steps

ECHO achieves:
(+) Same training quality
(+) Faster convergence
(+) Fewer compute devices

Be
tt
er



Section Summary

• Why memory matters?
• Deeper neural networks
• Higher training throughputs

• 3 Optimization Strategies:
• Virtualization
• Data Encoding
• Selective Recomputation 

(formulated as a bidirectional 
analysis)

• Impact of memory optimizations
• Same training quality
• Faster convergence
• Fewer compute devices
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Future Vision
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Google TPU AWS Trainium

Qualcomm
Cloud AI 100

SAPEON X220

Compute power cannot be exploited 
without a mighty compiler stack.
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