
CSCB58:
Computer Organization

Prof. Gennady Pekhimenko

University of Toronto

Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

CSCB58 Week 12

2

B58 Evaluation

• Please check your e-mail for a link to your evaluations

• Or go to: http://uoft.me/openevals

3

http://uoft.me/openevals

Execution Stages

▪ Fetch: Updating the PC and locating the instruction to execute.

▪ Decode: Translating the instruction and reading inputs from the
register file.

▪ Execute / Address Computation: Using the ALU to compute an
operation or calculate an address.

▪ Memory Read or Write: Memory operations must access
memory. Non-memory operations skip this.

▪ Register Writeback: The result is written to the register file.

4

Pipelining the Execution Stages

5

without pipelining

with pipelining

latency: 950 ps

throughput: 1 instr. per 950 ps = ~1 billion / sec

latency: 5 x 250 = 1250 ps

throughput: 1 instr. per 250 ps = ~4 billion / sec

Fixed-length stages

fibonacci(int n)

int fib (int n){

if (n <= 1)

return n;

else

return fib (n - 1) + fib (n - 2);

}

6

fibonacci(int n)

fib:

bgt $a0, 1, recurse

move $v0, $a0

jr rat0, 0($sp)

1. Assign register names
to variables and
determine which is base
case and which is
recursive.

2. Only one input, n is
passed in register $a0.
The base case is the
“then” clause. The
recursive case is the
“else” clause.

3. Convert the code for
the base case.

7

Note: codes on the slides are
not guaranteed to be correct.
You need to be able to find the
errors and fix them.

fibonacci(int n)

fib:

bgt $a0, 1, recurse

move $v0, $a0

jr rat0, 0($sp)

recurse:

sub $sp, $sp, 12 # We need to store 3 registers

to stack

sw $ra, 0($sp) # $ra is the first register

sw $a0, 4($sp) # $a0 is the second register,

we cannot assume $a

registers will not be

overwritten by callee

Save callee- and caller-
saved registers on the
stack.

8

Note: codes on the slides are
not guaranteed to be correct.
You need to be able to find the
errors and fix them.

fibonacci(int n)

fib: …

recurse: …

addi $a0, $a0, -1 # N-1

jal fib

sw $v0, 8($sp) # store $v0, the third register

to be stored on the stack so

it doesn’t get overwritten by

callee

Call fib recursively

9

Note: codes on the slides are
not guaranteed to be correct.
You need to be able to find the
errors and fix them.

fibonacci(int n)

fib: …

recurse: …

…

lw $a0, 4($sp) # retrieve original value of N

addi $a0, $a0, -2 # N-2

jal fib

Call fib recursively again

10

Note: codes on the slides are
not guaranteed to be correct.
You need to be able to find the
errors and fix them.

fibonacci(int n)

fib: …

recurse: …

…

…

lw $t0, 8($sp) # retrieve first function result

add $v0, $v0, $t0

lw $ra, 0($sp) # retrieve return address

addi $sp, $sp, 12

jr $ra

Clean up the stack and
return the result.

11

Note: codes on the slides are
not guaranteed to be correct.
You need to be able to find the
errors and fix them.

CSCB58:
Computer Organization

Prof. Gennady Pekhimenko

University of Toronto

Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

