
CSCB58:
Computer Organization

Prof. Gennady Pekhimenko

University of Toronto

Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

CSCB58 Week 10:
Summary

2

Week 10 Summary

It is all about Assembly:

• Basic instructions
• Decoding

• Interpretation

3

Question #1

▪ What are the following assembly language instructions doing?

sub $t7, $t0, $t1

andi $t7, $t0, 15

sra $t2, $t1, 2

Subtract register $t1 from $t0
and placing the result into $t7

Bitwise AND between register
$t0 and 15 (1111), with the
result placed into register $t7

Arithmetic shift of register $t1
two bits to the right, with the
result stored in $t2

As a reminder…

▪ MIPS register values:
 Register 0 ($zero): value 0 -- always.

 Register 1 ($at): reserved for the assembler.

 Registers 2-3 ($v0, $v1): return values

 Registers 4-7 ($a0-$a3): function arguments

 Registers 8-15, 24-25 ($t0-$t9): temporaries

 Registers 16-23 ($s0-$s7): saved temporaries

 Registers 28-31 ($gp, $sp, $fp, $ra): memory and
function support

 Registers 27-28: reserved for OS kernel

Question #2

▪ How do you translate the following assembly language
instruction into machine code?

add $t7, $t0, $t1

opcode rs rt

6 5

rd

5

shamt

5

funct

5 6

R-type instruction!

Question #2

▪ Step #1: The opcode
 Arithmetic operations start with six 0’s, and have

the function identifier at the end.

▪ Step #2: The register values
 Remember that $t0 does not translate to register 0

 The temporary registers start at register 8,
so $t0→ 8, $t1→ 9 and $t7→15

add $t7, $t0, $t1

000000 sssss ttttt ddddd XXXXX 100000

000000 01000 01001 01111 XXXXX 100000

Question #3

▪ What are the following assembly language instructions doing?

beq $t2, $zero, top

jalr $t0

Jump to the line with label “top” if
register $t2 is equal to 0 ($zero)

Store the current PC location into
$ra (register $31) and jump to the
location stored in register $t0

Question #4

▪ How do you translate the following assembly language
instruction into machine code?

xori $t7, $t0, -1

I-type instruction!

opcode rs rt

6 5

immediate

5 16

Question #4

▪ Step #1: The opcode

 I-type instructions start with the opcode value:

▪ Step #2: The register values
 Register $t0 translates to register 8, and register
$t7 translates to register 15

 16-bit immediate value is -1.

001110 sssss ttttt iiiiiiiiiiiiiiii

001110 01000 01111 1111111111111111

xori $t7, $t0, -1

Question #5

▪ How do you write an assembly language program that can
swap the values in $t0 and $t1, using $t2 as a temp value?

add $t2, $zero, $t0

add $t0, $zero, $t1

add $t1, $zero, $t2

CSCB58:
Computer Organization

Prof. Gennady Pekhimenko

University of Toronto

Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

