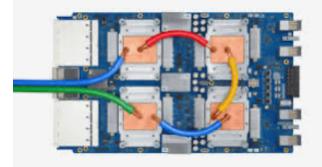
CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto Fall 2020



The content of this lecture is adapted from the lectures of Larry Zheng and Steve Engels

CSCB58 Week 7: Summary

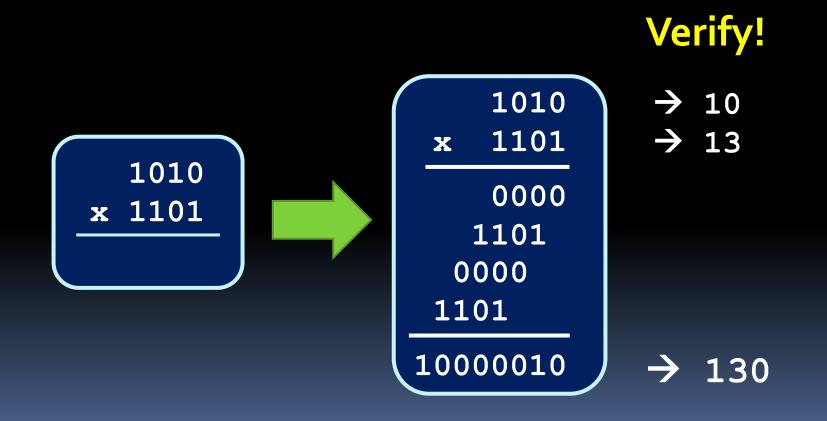
Week 7 Summary

We learned

- Circuit Efficiency
 - Propagation and contamination delays
- Processor components
 - ALUs

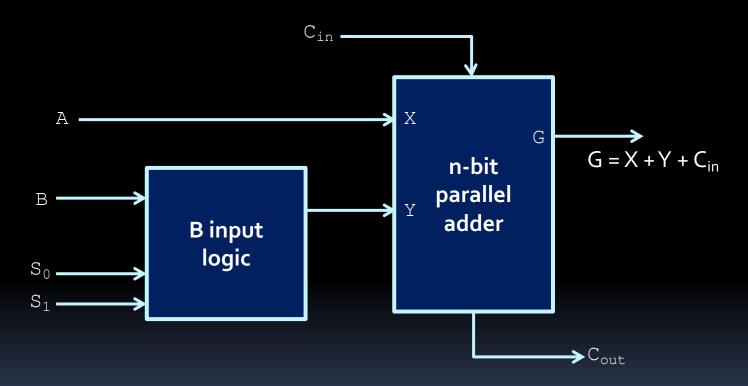
Question #1

What is the result of the following operation?



Question #2

The arithmetic unit of the ALU looks like this:



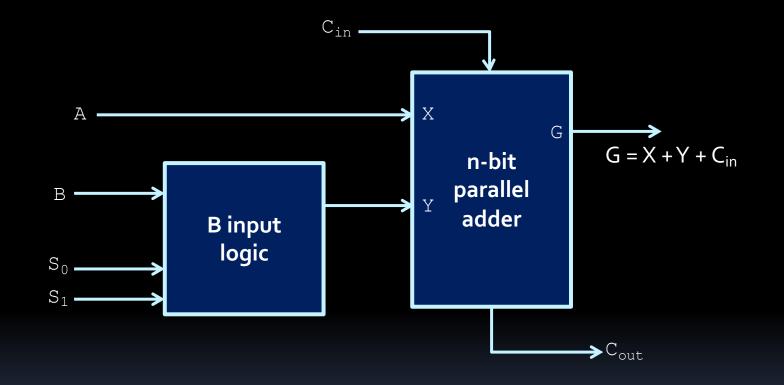
What values for S₀, S₁ and C_{in} do we need in order to subtract B from A?

Question #2 (cont'd)

 Kind of an unfair question, in that there's a table that fills in some necessary details:

Select		Input	Operation	
S ₁	S ₀	Y	C _{in} =0	C _{in} =1
0	0	All 0s	G = A (transfer)	G = A+1 (increment)
0	1	В	G = A+B (add)	G = A+B+1
1	0	B	$G = A + \overline{B}$	G = A+B+1 (subtract)
1	1	All 1s	G = A-1 (decrement)	G = A (transfer)

Question #2 (cont'd)



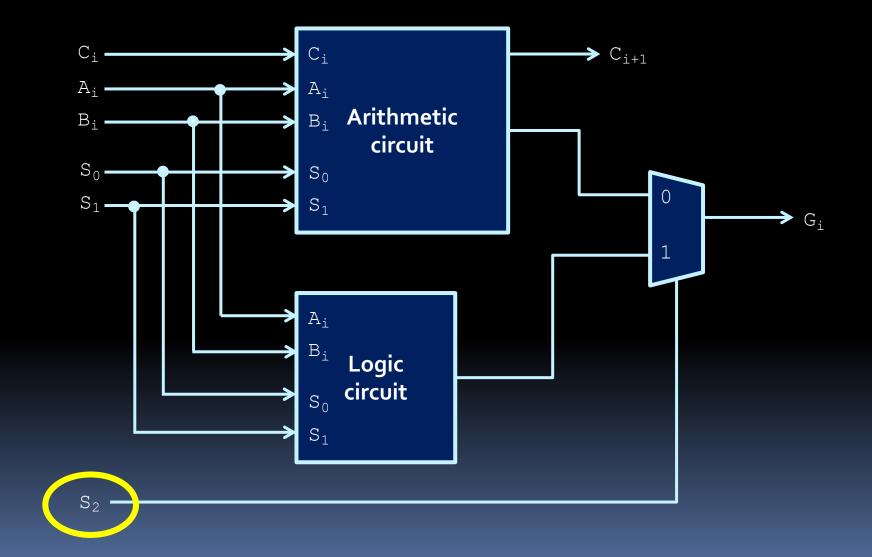
To subtract B from A, you must set S₀=0, S₁=1 and C_{in}=1.

Question #3

 In an ALU, S₀ and S₁ determine which kind of arithmetic or logical function to perform. But there are 3 select signals that go into the ALU.

What does S_2 do?

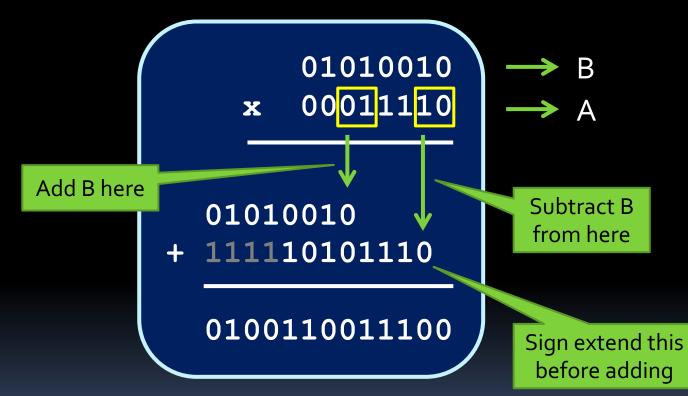
Question #3 (cont'd)



- Devised as a way to take advantage of circuits where shifting is cheaper than adding, or where space is at a premium.
 - Based on the premise that when multiplying by certain values (e.g. 99), it can be easier to think of this operation as a difference between two products.
- Consider the shortcut method when multiplying a given decimal value X by 9999:
 - X * 9999 = X * 10000 X * 1
- Now consider the equivalent problem in binary:
 - X * 001111 = X * 010000 X * 1

- This idea is triggered on cases where two neighboring digits in an operand are different.
 - If digits at i and i-1 are 0 and 1, the multiplicand is added to the result at position i.
 - If digits at i and i-1 are 1 and 0, the multiplicand is subtracted from the result at position i.
- The result is always a value whose size is the sum of the sizes of the two multiplicands.

• Example:



- We need to make this work in hardware.
 - Option #1: Have hardware set up to compare neighbouring bits at every position in A, with adders in place for when the bits don't match.
 - <u>Problem</u>: This is a lot of hardware, which Booth's Algorithm is trying to avoid.
 - Option #2: Have hardware set up to compare two neighbouring bits, and have them move down through A, looking for mismatched pairs.
 - Problem: Hardware doesn't move like that. Oops.

- Still need to make this work in hardware...
 - Option #3: Have hardware set up to compare two neighbouring bits in the lowest position of A, and looking for mismatched pairs in A by shifting A to the right one bit at a time.
 - <u>Solution!</u> This could work, but the accumulated solution P would have to shift one bit at a time as well, so that when B is added or subtracted, it's from the correct position.

- <u>Note:</u> unlike the accumulator, the bits here are being shifted to the right!
- Steps in Booth's Algorithm:
 - 1. Designate the two multiplicands as A & B, and the result as some product P.
 - 2. Add an extra zero bit to the right-most side of A.
 - **3.** Repeat the following for each original bit in A:
 - a) If the last two bits of A are the same, do nothing.
 - b) If the last two bits of A are 01, then add B to the highest bits of P.
 - c) If the last two bits of A are 10, then subtract B from the highest bits of P.
 - d) Perform one-digit arithmetic right-shift on both P and A.
 - 4. The result in P is the product of A and B.

- <u>Example</u>: (-5) * 2
- Steps #1 & #2:
 A = -5 → 11011

- Add extra zero to the right \rightarrow A = 11011 o
- B = 2 → 00010
- □ -B = -2 → 11110
- $\square P = 0 \rightarrow 000000000$

Step #3 (repeat 5 times):

- Check last two digits of A:
 1101 10
- Since digits are 10, subtract B from the most significant digits of P:
 - P 00000 00000
 - -B +11110
 - P' <u>11110 00000</u>
- Arithmetic shift P and A one bit to the right:
 - A = 111011 P = 11111 00000

- Step #3 (repeat 4 more times):
 - Check last two digits of A:
 1110 11

- Since digits are 11, do nothing to P.
- Arithmetic shift P and A one bit to the right:
 - A = 111101 P = 11111 10000

- Step #3 (repeat 3 more times):
 - Check last two digits of A:

- Since digits are o1, add B to the most significant digits of P:
 - P 11111 10000
 - +B +00010
 - P' 00001 10000
- Arithmetic shift P and A one bit to the right:
 - A = 111110 P = 00000 11000

- Step #3 (repeat 2 more times):
 - Check last two digits of A:
 1111 10

- Since digits are 10, subtract B from the most significant digits of P:
 - P 00000 11000
 - -B +11110
 - P' <u>11110 11000</u>
- Arithmetic shift P and A one bit to the right:
 - A = 111111 P = 11111 01100

Step #3 (final time):

- Check last two digits of A:
 1111 11
- Since digits are 11, do nothing to P:
- Arithmetic shift P and A one bit to the right:
 - A = 111111 P = 11111 10110

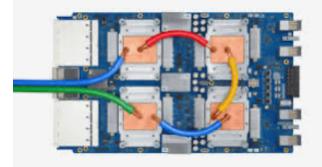
Final product: P = 111102

LO

CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto Fall 2020



The content of this lecture is adapted from the lectures of Larry Zheng and Steve Engels