CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto
Fall 2020

The content of this lecture is adapted from the lectures of

CSCB58 Week 7: Summary

Week 7 Summary

We learned

- Circuit Efficiency
- Propagation and contamination delays
- Processor components
- ALUs

Question \#1

- What is the result of the following operation?

- The arithmetic unit of the ALU looks like this:

- What values for S_{0}, S_{1} and $C_{i n}$ do we need in order to subtract B from A?
- Kind of an unfair question, in that there's a table that fills in some necessary details:

Select		Input	Operation	
S_{1}	$\mathrm{~S}_{0}$	Y	$\mathrm{C}_{\mathrm{in}}=0$	$\mathrm{C}_{\mathrm{in}}=1$
0	0	All 0s	$\mathrm{G}=\mathrm{A}$ (transfer)	$\mathrm{G}=\mathrm{A}+1$ (increment)
0	1	B	$\mathrm{G}=\mathrm{A}+\mathrm{B}$ (add)	$\mathrm{G}=\mathrm{A}+\mathrm{B}+1$
1	0	\bar{B}	$\mathrm{G}=\mathrm{A}+\overline{\mathrm{B}}$	$\mathrm{G}=\mathrm{A}+\overline{\mathrm{B}}+1$ (subtract)
1	1	All 1s	$\mathrm{G}=\mathrm{A}-1$ (decrement)	$\mathrm{G}=\mathrm{A}$ (transfer)

Question \#2 (cont’d)

- To subtract B from A_{1} you must set $S_{0}=0, S_{1}=1$ and $\mathrm{C}_{\mathrm{in}}=1$.
- In an ALU, S_{0} and S_{1} determine which kind of arithmetic or logical function to perform. But there are 3 select signals that go into the ALU.

What does S_{2} do?

Question \#3 (cont’d)

- Devised as a way to take advantage of circuits where shifting is cheaper than adding, or where space is at a premium.
- Based on the premise that when multiplying by certain values (e.g. 99), it can be easier to think of this operation as a difference between two products.
- Consider the shortcut method when multiplying a given decimal value X by 9999 :

$$
X * 9999=x * 10000-X * 1
$$

- Now consider the equivalent problem in binary:

$$
X * 001111=X * 010000-X * 1
$$

- This idea is triggered on cases where two neighboring digits in an operand are different.
- If digits at i and i-1 are 0 and 1 , the multiplicand is added to the result at position i.
- If digits at i and i-1 are 1 and 0 , the multiplicand is subtracted from the result at position i.
- The result is always a value whose size is the sum of the sizes of the two multiplicands.
- Example:

ill Booth's Algorithm

- We need to make this work in hardware.
- Option \#1: Have hardware set up to compare neighbouring bits at every position in \mathbb{A}, with adders in place for when the bits don't match.
- Problem: This is a lot of hardware, which Booth's Algorithm is trying to avoid.
- Option \#2: Have hardware set up to compare two neighbouring bits, and have them move down through A, looking for mismatched pairs.
- Problem: Hardware doesn't move like that. Oops.

ill Booth's Algorithm

- Still need to make this work in hardware...
- Option \#3: Have hardware set up to compare two neighbouring bits in the lowest position of A, and looking for mismatched pairs in A by shifting A to the right one bit at a time.
- Solution! This could work, but the accumulated solution P would have to shift one bit at a time as well, so that when B is added or subtracted, it's from the correct position.

Booth's Algorithm

- Steps in Booth's Algorithm:

1. Designate the two multiplicands as A \& B, and the result as some product P.
2. Add an extra zero bit to the right-most side of A.
3. Repeat the following for each original bit in A :
a) If the last two bits of A are the same, do nothing.
b) If the last two bits of A are 01 , then add B to the highest bits of P.
c) If the last two bits of A are 10 , then subtract B from the highest bits of P.
d) Perform one-digit arithmetic right-shift on both P and A . The result in P is the product of A and B .

Booth's Algorithm Example

- Example: (-5) * 2
- Steps \#1 \& \#2:
- $A=-5 \quad \rightarrow \quad 11011$
" Add extra zero to the right $\quad \rightarrow \quad \mathrm{A}=110110$
- B=2 $\quad \rightarrow \quad 00010$
- $-B=-2 \rightarrow 11110$
- $\mathrm{P}=0 \quad \rightarrow \quad 0000000000$
- Step \#3 (repeat 5 times):
- Check last two digits of A:

$1 1 0 1 \longdiv { 1 0 }$

- Since digits are 10 , subtract B from the most significant digits of P :

$$
\begin{array}{crr}
\mathrm{P} & 00000 & 00000 \\
-\mathrm{B} & +11110 & \\
\mathrm{P}^{\prime} & 11110 & 00000 \\
\hline
\end{array}
$$

- Arithmetic shift P and A one bit to the right:

$$
A=111011 \quad P=1111100000
$$

- Step \#3 (repeat 4 more times):
- Check last two digits of A:
$1110 \quad 11$
- Since digits are 11 , do nothing to P.
- Arithmetic shift P and A one bit to the right:
- $A=111101 \quad P=1111110000$
- Step \#3 (repeat 3 more times):
- Check last two digits of A:

111101

- Since digits are 01, add B to the most significant digits of P :

$$
\begin{array}{rrr}
\mathrm{P} & 11111 & 10000 \\
+\mathrm{B} & +00010 & \\
\mathrm{P}^{\prime} & 00001 & 10000 \\
\hline
\end{array}
$$

- Arithmetic shift P and A one bit to the right:

$$
A=111110 \quad P=0000011000
$$

- Step \#3 (repeat 2 more times):
- Check last two digits of A:

- Since digits are 10 , subtract B from the most significant digits of P :

$$
\begin{array}{rrr}
\mathrm{P} & 00000 & 11000 \\
-\mathrm{B} & +11110 & \\
\mathrm{P}^{\prime} & 11110 & 11000 \\
\hline
\end{array}
$$

- Arithmetic shift P and A one bit to the right:

$$
A=111111 \quad P=1111101100
$$

Booth's Algorithm Example

- Step \#3 (final time):
- Check last two digits of A:

- Since digits are 11, do nothing to P:
- Arithmetic shift P and A one bit to the right:
- $A=111111 \quad P=1111110110$
- Final product:

$$
\begin{aligned}
P & =111110110 \\
& =-10
\end{aligned}
$$

CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto
Fall 2020

The content of this lecture is adapted from the lectures of

