CSCB58:
Computer Organization

Prof. Gennady Pekhimenko

- ' o b University of Toronto
Fall 2020

l:n] : |: e ey

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

CSCB58 Week 7:
Summary

Week 7 Summary

We learned

* Circuit Efficiency
* Propagation and contamination delays

* Processor components
* ALUsS

Question

1

= What s the result of the following operation?

1010
x 1101

=)

-

X

1010)
1101

1

0000
1101
0000
101

\}00000104/

Verify!

-2 10
- 13

-2 130

Question #2

= The arithmetic unit of the ALU looks like this:

Cin l
A)l X
G >
n-bit G=X+Y +(,
lE

B —> | , pa

S, logic

S m—

)Cout

= What values for S, S; and C,, do we need in order
to subtract B from A?

Question #2 (cont’d)

= Kind of an unfair question, in that there’s a
table that fills in some necessary details:

Select Input Operation

Y C; Ci,=1

in

All Os G = A (transfer) G = A+1 (increment)
G =A+B (add) G=A+B+1

G=A+B G = A+B+1 (subtract)

G =A-1 (decrement) G = A (transfer)

Question #2 (cont’d)

Cin

A J X
G >
n-bit G=X+Y +(,
rallel
= — | , Pparalle
B |nput adder
S, logic
S, —>
)Cout

* Tosubtract B from 2, you must set S,=0, S;=1
and Cin=1'

Question #3

= InanALU, S, and S, determine which kind of arithmetic or
logical function to perform. But there are 3 select signals that
go into the ALU.

What does S, do?

Question

3 (cont’d)

> Cs —> Ci1
') Al
>| B, Arithmetic
circuit
> S, ~—
> S, 0
1
o
_Z:j“
B; :
Logic

> S, circuit

Booth’s Algorithm

= Devised as a way to take advantage of circuits
where shifting is cheaper than adding, or where
space is ata premium.

Based on the premise that when multiplying by certain
values (e.g. 99), it can be easier to think of this
operation as a difference between two products.

= Consider the shortcut method when multiplying a
given decimal value X by 9999:
X*9999 = X*10000 - X*1
= Now consider the equivalent problem in binary:
X*001111 = X*010000 - X*1

Booth’s Algorithm

» Thisidea is triggered on cases where two neighboring digits in
an operand are different.

If digits at 1 and 1 -1 are 0 and 1, the multiplicand is added to the
result at position i.

If digits at 1 and 1 -1 are 1 and 0, the multiplicand is subtracted from
the result at position 1.
= Theresultis always a value whose size is the sum of the sizes
of the two multiplicands.

Booth’s Algorithm

= Example:

-

Add B here

Zd;\ —> B
10

—> A

010100
x 000111
01010010 l

+ 111110101110

Subtract B
from here

\\;0100110011100

Sign extend this
before adding

Booth’s Algorithm

= \We need to make this work in hardware.

Option #1: Have hardware set up to compare neighbouring bits at
every position in A, with adders in place for when the bits don't

match.

Problem: This is a lot of hardware, which Booth’s Algorithm is trying to
avoid.

Option #2: Have hardware set up to compare two neighbouring bits,
and have them move down through A, looking for mismatched pairs.

Problem: Hardware doesn’t move like that. Oops.

Booth’s Algorithm

= Still need to make this work in hardware...

Option #3: Have hardware set up to compare two neighbouring bits
in the lowest position of A, and looking for mismatched pairsin A by
shifting A to the right one bit at a time.

Solution! This could work, but the accumulated solution P would have to
shift one bit at a time as well, so that when B is added or subtracted, it’s
from the correct position.

Booth’s Algorithm P

bt?f::;io the righ®
. . S
= Steps in Booth's Algorithm:

Designate the two multiplicands as A & B, and the
result as some product P.

Add an extra zero bit to the right-most side of A.

Repeat the following for each original bit in A:
If the last two bits of A are the same, do nothing.

If the last two bits of A are 01, then add B to the highest
bits of P.

If the last two bits of A are 10, then subtract B from the
highest bits of P.

Perform one-digit arithmetic right-shift on both P and A.
The result in P is the product of A and B.

Booth’s Algorithm Example

= Example: (-5) * 2

= Steps #1 & #2:
N N 4 11011
Add extra zerototheright =2 A=110110
B=2 = 00010
-B=-2 2 11110
P=o0 = 00000 00000

Booth’s Algorithm Example

= Step #3 (repeat 5 times):
Check last two digits of A:
1101110
Since digits are 10, subtract B from the most significant digits of P:
P 00000 00000
-B +11110
et 11110 00000

Arithmetic shift P and A one bit to the right:
A =111021 P =11111 00000

Booth’s Algorithm Example

= Step #3 (repeat 4 more times):
Check last two digits of A:
111011
Since digits are 11, do nothing to P.
Arithmetic shift P and A one bit to the right:

A=111101 P=11111 10000

Booth’s Algorithm Example

= Step #3 (repeat 3 more times):
Check last two digits of A:
1111(01
Since digits are 01, add B to the most significant digits of P:
P 11111 10000
+B +00010
P’ 00001 10000

Arithmetic shift P and A one bit to the right:
A =111110 P =00000 11000

Booth’s Algorithm Example

= Step #3 (repeat 2 more times):
Check last two digits of A:
1111 (10
Since digits are 10, subtract B from the most significant digits of P:

P 00000 11000

-B +11110
P’ 11110 11000
Arithmetic shift P and A one bit to the right:

A=111111 P=11111 01100

Booth’s Algorithm Example

= Step #3 (final time):
Check last two digits of A:
1111 |11
Since digits are 11, do nothing to P:
Arithmetic shift P and A one bit to the right:

A=111111 P=1111110110

* Final product: | P =111110110

=-10

CSCB58:
Computer Organization

Prof. Gennady Pekhimenko

- ' o b University of Toronto
Fall 2020

l:n] : |: e ey

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

