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Week 7 Summary

We learned
• Circuit Efficiency
• Propagation and contamination delays

• Processor components
• ALUs
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Question #1

§ What is the result of the following operation?

1010
x  1101

0000
1101
0000
1101

10000010

1010
x 1101

Verify!

à 10
à 13

à 130



Question #2
§ The arithmetic unit of the ALU looks like this:

§ What values for S0, S1 and Cin do we need in order 
to subtract B from A?

B input
logic

n-bit 
parallel
adder

A

B

Cin

S0
S1

G
G = X + Y + Cin

Cout

X

Y



Question #2 (cont’d)

§ Kind of an unfair question, in that there’s a 
table that fills in some necessary details:

Select Input Operation

S1 S0 Y Cin=0 Cin=1

0 0 All 0s G = A  (transfer) G = A+1  (increment)

0 1 B G = A+B  (add) G = A+B+1

1 0 B G = A+B G = A+B+1  (subtract)

1 1 All 1s G = A-1  (decrement) G = A  (transfer)



Question #2 (cont’d)

§ To subtract B from A, you must set S0=0, S1=1 
and Cin=1.

B input
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Question #3

§ In an ALU, S0 and S1 determine which kind of arithmetic or 
logical function to perform. But there are 3 select signals that 
go into the ALU.

What does S2 do?



Question #3 (cont’d)

Logic
circuit

S0
S1

Gi

S0
S1

Ai
Bi

Ai
Bi Arithmetic

circuit
S0
S1

Ai
Bi

Ci Ci+1Ci

0

1

S2



Booth’s Algorithm

§ Devised as a way to take advantage of circuits 
where shifting is cheaper than adding, or where 
space is at a premium.
ú Based on the premise that when multiplying by certain 

values (e.g. 99), it can be easier to think of this 
operation as a difference between two products. 

§ Consider the shortcut method when multiplying a 
given decimal value X by 9999:
ú X*9999 = X*10000 – X*1

§ Now consider the equivalent problem in binary:
ú X*001111 = X*010000 – X*1



Booth’s Algorithm

§ This idea is triggered on cases where two neighboring digits in 
an operand are different.
ú If digits at i and i-1 are 0 and 1, the multiplicand is added to the 

result at position i. 
ú If digits at i and i-1 are 1 and 0, the multiplicand is subtracted from 

the result at position i. 

§ The result is always a value whose size is the sum of the sizes 
of the two multiplicands.



Booth’s Algorithm

§ Example:
01010010

x  00011110

01010010
+ 111110101110

0100110011100

B
A

Subtract B 
from here

Add B here

Sign extend this 
before adding



Booth’s Algorithm

§ We need to make this work in hardware. 
ú Option #1: Have hardware set up to compare neighbouring bits at 

every position in A, with adders in place for when the bits don’t 
match.
  Problem: This is a lot of hardware, which Booth’s Algorithm is trying to 

avoid.

ú Option #2: Have hardware set up to compare tw0 neighbouring bits, 
and have them move down through A, looking for mismatched pairs.
  Problem: Hardware doesn’t move like that. Oops.



Booth’s Algorithm

§ Still need to make this work in hardware… 
ú Option #3: Have hardware set up to compare tw0 neighbouring bits 

in the lowest position of A, and looking for mismatched pairs in A by 
shifting A to the right one bit at a time.
  Solution! This could work, but the accumulated solution Pwould have to 

shift one bit at a time as well, so that when B is added or subtracted, it’s 
from the correct position.



Booth’s Algorithm
§ Steps in Booth’s Algorithm:

1. Designate the two multiplicands as A & B, and the 
result as some product P.

2. Add an extra zero bit to the right-most side of A.
3. Repeat the following for each original bit in A:

a) If the last two bits of A are the same, do nothing.
b) If the last two bits of A are 01, then add B to the highest 

bits of P.
c) If the last two bits of A are 10, then subtract B from the 

highest bits of P.
d) Perform one-digit arithmetic right-shift on both P and A.

4. The result in P is the product of A and B.

Note: unlike the 

accumulator, the 

bits here are being 

shifted to the right!



Booth’s Algorithm Example

§ Example: (-5) * 2

§ Steps #1 & #2:
ú A = -5 à 11011

  Add extra zero to the right       à A = 11011 0

ú B = 2 à 00010
ú -B = -2 à 11110
ú P = 0 à 00000 00000



§ Step #3 (repeat 5 times):
ú Check last two digits of A:

1101 10

ú Since digits are 10, subtract B from the most significant digits of P:
P 00000 00000

-B +11110
P’ 11110 00000

ú Arithmetic shift P and A one bit to the right:
  A = 111011 P = 11111 00000

Booth’s Algorithm Example



§ Step #3 (repeat 4 more times):
ú Check last two digits of A:

1110 11

ú Since digits are 11, do nothing to P.
ú Arithmetic shift P and A one bit to the right:

  A = 111101 P = 11111 10000

Booth’s Algorithm Example



§ Step #3 (repeat 3 more times):
ú Check last two digits of A:

1111 01

ú Since digits are 01, add B to the most significant digits of P:
P 11111 10000

+B +00010
P’ 00001 10000

ú Arithmetic shift P and A one bit to the right:
  A = 111110 P = 00000 11000

Booth’s Algorithm Example



§ Step #3 (repeat 2 more times):
ú Check last two digits of A:

1111 10

ú Since digits are 10, subtract B from the most significant digits of P:
P 00000 11000

-B +11110
P’ 11110 11000

ú Arithmetic shift P and A one bit to the right:
  A = 111111 P = 11111 01100

Booth’s Algorithm Example



§ Step #3 (final time):
ú Check last two digits of A:

1111 11

ú Since digits are 11, do nothing to P:
ú Arithmetic shift P and A one bit to the right:

  A = 111111 P = 11111 10110

§ Final product: P = 111110110
= -10

Booth’s Algorithm Example
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