
CSCB58:
Computer Organization

Prof. Gennady Pekhimenko
University of Toronto

Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

CSCB58 Week 7:
Summary

2

Week 7 Summary

We learned
• Circuit Efficiency
• Propagation and contamination delays

• Processor components
• ALUs

3

Question #1

§ What is the result of the following operation?

1010
x 1101

0000
1101
0000
1101

10000010

1010
x 1101

Verify!

à 10
à 13

à 130

Question #2
§ The arithmetic unit of the ALU looks like this:

§ What values for S0, S1 and Cin do we need in order
to subtract B from A?

B input
logic

n-bit
parallel
adder

A

B

Cin

S0
S1

G
G = X + Y + Cin

Cout

X

Y

Question #2 (cont’d)

§ Kind of an unfair question, in that there’s a
table that fills in some necessary details:

Select Input Operation

S1 S0 Y Cin=0 Cin=1

0 0 All 0s G = A (transfer) G = A+1 (increment)

0 1 B G = A+B (add) G = A+B+1

1 0 B G = A+B G = A+B+1 (subtract)

1 1 All 1s G = A-1 (decrement) G = A (transfer)

Question #2 (cont’d)

§ To subtract B from A, you must set S0=0, S1=1
and Cin=1.

B input
logic

n-bit
parallel
adder

A

B

Cin

S0
S1

G
G = X + Y + Cin

Cout

X

Y

Question #3

§ In an ALU, S0 and S1 determine which kind of arithmetic or
logical function to perform. But there are 3 select signals that
go into the ALU.

What does S2 do?

Question #3 (cont’d)

Logic
circuit

S0
S1

Gi

S0
S1

Ai
Bi

Ai
Bi Arithmetic

circuit
S0
S1

Ai
Bi

Ci Ci+1Ci

0

1

S2

Booth’s Algorithm

§ Devised as a way to take advantage of circuits
where shifting is cheaper than adding, or where
space is at a premium.
ú Based on the premise that when multiplying by certain

values (e.g. 99), it can be easier to think of this
operation as a difference between two products.

§ Consider the shortcut method when multiplying a
given decimal value X by 9999:
ú X*9999 = X*10000 – X*1

§ Now consider the equivalent problem in binary:
ú X*001111 = X*010000 – X*1

Booth’s Algorithm

§ This idea is triggered on cases where two neighboring digits in
an operand are different.
ú If digits at i and i-1 are 0 and 1, the multiplicand is added to the

result at position i.
ú If digits at i and i-1 are 1 and 0, the multiplicand is subtracted from

the result at position i.

§ The result is always a value whose size is the sum of the sizes
of the two multiplicands.

Booth’s Algorithm

§ Example:
01010010

x 00011110

01010010
+ 111110101110

0100110011100

B
A

Subtract B
from here

Add B here

Sign extend this
before adding

Booth’s Algorithm

§ We need to make this work in hardware.
ú Option #1: Have hardware set up to compare neighbouring bits at

every position in A, with adders in place for when the bits don’t
match.
 Problem: This is a lot of hardware, which Booth’s Algorithm is trying to

avoid.

ú Option #2: Have hardware set up to compare tw0 neighbouring bits,
and have them move down through A, looking for mismatched pairs.
 Problem: Hardware doesn’t move like that. Oops.

Booth’s Algorithm

§ Still need to make this work in hardware…
ú Option #3: Have hardware set up to compare tw0 neighbouring bits

in the lowest position of A, and looking for mismatched pairs in A by
shifting A to the right one bit at a time.
 Solution! This could work, but the accumulated solution Pwould have to

shift one bit at a time as well, so that when B is added or subtracted, it’s
from the correct position.

Booth’s Algorithm
§ Steps in Booth’s Algorithm:

1. Designate the two multiplicands as A & B, and the
result as some product P.

2. Add an extra zero bit to the right-most side of A.
3. Repeat the following for each original bit in A:

a) If the last two bits of A are the same, do nothing.
b) If the last two bits of A are 01, then add B to the highest

bits of P.
c) If the last two bits of A are 10, then subtract B from the

highest bits of P.
d) Perform one-digit arithmetic right-shift on both P and A.

4. The result in P is the product of A and B.

Note: unlike the

accumulator, the

bits here are being

shifted to the right!

Booth’s Algorithm Example

§ Example: (-5) * 2

§ Steps #1 & #2:
ú A = -5 à 11011

 Add extra zero to the right à A = 11011 0

ú B = 2 à 00010
ú -B = -2 à 11110
ú P = 0 à 00000 00000

§ Step #3 (repeat 5 times):
ú Check last two digits of A:

1101 10

ú Since digits are 10, subtract B from the most significant digits of P:
P 00000 00000

-B +11110
P’ 11110 00000

ú Arithmetic shift P and A one bit to the right:
 A = 111011 P = 11111 00000

Booth’s Algorithm Example

§ Step #3 (repeat 4 more times):
ú Check last two digits of A:

1110 11

ú Since digits are 11, do nothing to P.
ú Arithmetic shift P and A one bit to the right:

 A = 111101 P = 11111 10000

Booth’s Algorithm Example

§ Step #3 (repeat 3 more times):
ú Check last two digits of A:

1111 01

ú Since digits are 01, add B to the most significant digits of P:
P 11111 10000

+B +00010
P’ 00001 10000

ú Arithmetic shift P and A one bit to the right:
 A = 111110 P = 00000 11000

Booth’s Algorithm Example

§ Step #3 (repeat 2 more times):
ú Check last two digits of A:

1111 10

ú Since digits are 10, subtract B from the most significant digits of P:
P 00000 11000

-B +11110
P’ 11110 11000

ú Arithmetic shift P and A one bit to the right:
 A = 111111 P = 11111 01100

Booth’s Algorithm Example

§ Step #3 (final time):
ú Check last two digits of A:

1111 11

ú Since digits are 11, do nothing to P:
ú Arithmetic shift P and A one bit to the right:

 A = 111111 P = 11111 10110

§ Final product: P = 111110110
= -10

Booth’s Algorithm Example

CSCB58:
Computer Organization

Prof. Gennady Pekhimenko
University of Toronto

Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

