CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto
Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

CSCB58 Week 5:
 Summary

Week 5 Summary

We learned

- Counters
- Registers
- FSMs

|ll Question \#1

- Imagine you have access to a 4-bit register.

- What does the Write signal do?
- Assume that you have access to a counter circuit:

- How do you make a signal that goes high after 10 clock cycles?
- How do you make a signal that goes high every 10 clock cycles?
- How do you make a signal that goes high every 100 clock cycles, only using 4-bit counters like the one below (and a few additional gates)?

Question \#3

- How many flipflops would you need to implement the following finite state machine (FSM)?
- 11 states
- \# flip-flops =
$\left\lceil\log _{2}\right.$ (\# of states) \rceil
\# flip-flops = 4

Question \#4

- How would we make the following Finite State Machine?

Exploding pen continued...

Making the James Bond pen

- Pen starts off in disarmed state.
- When clicked three times, pen arms itself.

- When clicked three more times, pen disarms itself.
- What are the steps to making this circuit?

Reminder: How to Design FSM

- As a brief reminder:

1. Draw state diagram
2. Derive state table from state diagram
3. Assign flip-flop configuration to each state

- Number of flip-flops needed is: $\lceil\log$ (\# of states) \rceil

4. Redraw state table with flip-flop values
5. Derive combinational circuit for output and for each flip-flop input.

Review of FSMs

- Step 5 requires two combinational circuit design tasks.
- For Moore machines (pictured bottom right), output is determined solely based on current state (i.e. flip-flop values).

Review of FSMs

- For Mealy machines, output is determined by both the current state and the current input values.
- For simplicity, most of our examples will focus on Moore machines.

State diagrams with output

- Output values are incorporated into the state diagram, depending on the machine used.
$>$ Moore Machine
> Mealy Machine

- When scanning UPC barcodes, the laser scanner looks for black and white bars that
 indicate the start of the code.
- If black is read as a 1 and white is read as a 0, the start of the code (from either direction) has a 1010 pattern.

Can you create a state machine that detects this pattern?

Step \#1: Draw state diagram

III Step \#2: State Table

- Output Z is determined by the current state.
- Denotes Moore machine.
- Next step: allocate flipflops values to each state.
- How many flip-flops will we need for 5 states?
- Recall:

Present State	\mathbf{Z}	\mathbf{X}	Next State
A	0	0	A
A	0	1	B
B	0	0	C
B	0	1	B
C	0	0	A
C	0	1	D
D	0	0	E
D	0	1	B
E	1	0	A
E	1	1	D

$$
\text { \# flip-flops = 「log(\# of states) }\rceil
$$

Step \#3: Flip-Flop Assignment

- 3 flip-flops needed here.
- Assign states carefully though!
- Can't simply do this:

$$
\begin{array}{ll}
>A=100 & >B=011 \\
>C=010 & >D=001 \\
>E=000 &
\end{array}
$$

Step \#3: Flip-Flop Assignment

- Be careful of race conditions.
- Better solution:

$$
\begin{array}{ll}
>A=000 & >B=001 \\
>C=011 & >D=101 \\
>E=100 &
\end{array}
$$

- Still has race conditions $(C \rightarrow D, C \rightarrow A)$, but is safer.
- "Safer" is defined according to output behaviour.
- Sometimes, extra flip-flops are used for extra insurance.

Step \#4: Redraw State Table

- From here, we can construct the K-maps for the state logic combinational circuit.
- Derive equations for each flip-flop value, given the previous values and the input X.

Present State		\mathbf{Z}	\mathbf{X}	Next State			
$\mathbf{0}$	$\mathbf{0}$	0	0	0	0	0	0
$\mathbf{0}$	0	0	0	1	0	0	1
0	0	1	0	0	0	1	1
$\mathbf{0}$	$\mathbf{0}$	1	0	1	0	0	1
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	0	0	0	0	0
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	0	1	1	0	1
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	0	0	1	0	0
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	0	1	0	0	1
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	1	0	0	0	0
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	1	1	1	0	1

- Three equations total, plus one more for Z (trivial for Moore machines).

III Step 5: Circuit design

- Karnaugh map for F_{2} :

	$\bar{F}_{0} \cdot \overline{\mathbf{X}}$	$\overline{\mathbf{F}}_{0} \cdot \mathbf{X}$	$\mathrm{~F}_{0} \cdot \mathbf{X}$	$\mathrm{~F}_{0} \cdot \overline{\mathbf{X}}$
$\overline{\mathrm{~F}}_{2} \cdot \overline{\mathrm{~F}}_{1}$	0	0	0	0
$\overline{\mathrm{~F}}_{2} \cdot \mathbf{F}_{1}$	X	X	1	0
$\mathrm{~F}_{2} \cdot \mathrm{~F}_{1}$	X	X	X	X
$\mathrm{F}_{2} \cdot \bar{F}_{1}$	0	1	0	1

$$
\mathrm{F}_{2}=\mathrm{F}_{1} \mathrm{X}+\mathrm{F}_{2} \overline{\mathrm{~F}}_{0} \mathrm{X}+\mathrm{F}_{2} \mathrm{~F}_{0} \bar{X}
$$

III Step 5: Circuit design

- Karnaugh map for F_{1} :

	$\overline{\mathbf{F}}_{0} \cdot \overline{\mathrm{X}}$	$\overline{\mathrm{F}}_{0} \cdot \mathbf{X}$	$\mathbf{F}_{0} \cdot \mathbf{X}$	$\mathrm{~F}_{0} \cdot \overline{\mathrm{X}}$
$\overline{\mathrm{F}}_{2} \cdot \overline{\mathrm{~F}}_{1}$	0	0	0	1
$\bar{F}_{2} \cdot \mathrm{~F}_{1}$	X	X	0	0
$\mathrm{~F}_{2} \cdot \mathrm{~F}_{1}$	X	X	X	X
$\mathrm{F}_{2} \cdot \overline{\mathrm{~F}}_{1}$	0	0	0	0

$$
F_{1}=F_{2} F_{1} F_{0} \bar{X}
$$

III Step 5: Circuit design

- Karnaugh map for F_{0} :

	$\bar{F}_{0} \cdot \overline{\mathbf{X}}$	$\overline{\mathrm{~F}}_{0} \cdot \mathbf{X}$	$\mathrm{~F}_{0} \cdot \mathbf{X}$	$\mathrm{~F}_{0} \cdot \overline{\mathrm{X}}$
$\overline{\mathrm{F}}_{2} \cdot \overline{\mathrm{~F}}_{1}$	0	1	1	1
$\bar{F}_{2} \cdot \mathrm{~F}_{1}$	X	X	1	0
$\mathrm{~F}_{2} \cdot \mathrm{~F}_{1}$	X	X	X	X
$\mathrm{F}_{2} \cdot \bar{F}_{1}$	0	1	1	0

$$
\mathrm{F}_{0}=\mathrm{X}+\overline{\mathrm{F}}_{2} \overline{\mathrm{~F}}_{1} \mathrm{~F}_{0}
$$

Step 5: Circuit design

- Output value Z goes high based on the following output equation:

$$
Z=F_{2} \bar{F}_{1} \bar{F}_{0}
$$

- Note: All of these equations would be different, given different flip-flop assignments!

CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto
Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

