CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto Fall 2020

The content of this lecture is adapted from the lectures of Larry Zheng and Steve Engels

CSCB58 Week 5: Summary

Week 5 Summary

We learned

- Counters
- Registers
- FSMs

Question #1

Imagine you have access to a 4-bit register.

What does the Write signal do?

Question #2

Assume that you have access to a counter circuit:

How do you make a signal that goes high after 10 clock cycles?
How do you make a signal that goes high every 10 clock cycles?

Question #2 (cont'd)

 How do you make a signal that goes high every 100 clock cycles, only using 4-bit counters like the one below (and a few additional gates)?

Question #3

- How many flipflops would you need to implement the following finite state machine (FSM)?
 - 11 states
 - # flip-flops = 「log₂ (# of states)]
 - # flip-flops = 4

Question #4

 How would we make the following Finite State Machine?

Exploding pen continued...

Making the James Bond pen

 Pen starts off in disarmed state.

 When clicked three times, pen arms itself.

- When clicked three more times, pen disarms itself.
- What are the steps to making this circuit?

Reminder: How to Design FSM

As a brief reminder:

- **1**. Draw state diagram
- 2. Derive state table from state diagram
- 3. Assign flip-flop configuration to each state
 - Number of flip-flops needed is: log(# of states)
- **4.** Redraw state table with flip-flop values
- 5. Derive combinational circuit for output and for each flip-flop input.

Review of FSMs

- Step 5 requires two combinational circuit design tasks.
 - For Moore machines

 (pictured bottom right),
 output is determined
 solely based on current
 state (i.e. flip-flop
 values).

Review of FSMs

- For Mealy machines, output is determined by both the current state and the current input values.
 - For simplicity, most of our examples will focus on Moore machines.

State diagrams with output

- Output values are incorporated into the state diagram, depending on the machine used.
 - Moore Machine

Mealy Machine

FSM Example: Barcode Reader

 When scanning UPC barcodes, the laser scanner looks for black and white bars that indicate the start of the code.

- If black is read as a 1 and white is read as a 0, the start of the code (from either direction) has a 1010 pattern.
 - Can you create a state machine that detects this pattern?

Step #1: Draw state diagram

Step #2: State Table

- Output Z is determined by the current state.
 - Denotes Moore machine.
- Next step: allocate flipflops values to each state.
 - How many flip-flops will we need for 5 states?
 - Recall:
 - # flip-flops = log(# of states)

Present State	Z	x	Next State
A	0	0	A
A	0	1	В
В	0	0	С
В	0	1	В
С	0	0	A
С	0	1	D
D	0	0	Е
D	0	1	В
Е	1	0	A
E	1	1	D

Step #3: Flip-Flop Assignment

В

0

0

0

0

Ε

D

Α

Why not?

3 flip-flops
 needed here.

- Assign states carefully though!
- Can't simply do this:

 - ▷ C = 010
 ▷ D = 001
 - ≻ E = 000

Step #3: Flip-Flop Assignment

- Be careful of race conditions.
- Better solution:
 - ▷ A = 000
 ▷ B = 001
 - ▷ C = 011
 ▷ D = 101
 - ≻ E = 100

- Still has race conditions ($C \rightarrow D, C \rightarrow A$), but is safer.
 - "Safer" is defined according to output behaviour.
 - Sometimes, extra flip-flops are used for extra insurance.

Step #4: Redraw State Table

 From here, we can construct the K-maps for the state logic combinational circuit.

 Derive equations for each flip-flop value, given the previous values and the input X.

Present State		Z	x	Next State			
0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	1
0	0	1	0	0	0	1	1
0	0	1	0	1	0	0	1
0	1	1	0	0	0	0	0
0	1	1	0	1	1	0	1
1	0	1	0	0	1	0	0
1	0	1	0	1	0	0	1
1	0	0	1	0	0	0	0
1	0	0	1	1	1	0	1

Three equations total, plus one more for Z (trivial for Moore machines).

Karnaugh map for F₂:

$$F_2 = F_1 X + F_2 \overline{F}_0 X + F_2 F_0 \overline{X}$$

Karnaugh map for F₁:

	$\overline{\mathbf{F}}_{0}\cdot\overline{\mathbf{X}}$	$\overline{\mathbf{F}}_{0} \cdot \mathbf{X}$	F ₀ ·X	$\mathbf{F}_0 \cdot \overline{\mathbf{X}}$
$\overline{\mathbf{F}}_2 \cdot \overline{\mathbf{F}}_1$	0	0	0	1
$\overline{\mathbf{F}}_2 \cdot \mathbf{F}_1$	Х	Х	0	0
$\mathbf{F}_2 \cdot \mathbf{F}_1$	Х	Х	Х	Х
$\mathbf{F}_2 \cdot \overline{\mathbf{F}}_1$	0	0	0	0

$$\mathbf{F}_1 = \mathbf{F}_2 \mathbf{F}_1 \mathbf{F}_0 \mathbf{X}$$

Karnaugh map for F_o:

$$\mathbf{F}_0 = \mathbf{X} + \mathbf{F}_2 \mathbf{F}_1 \mathbf{F}_0$$

Output value Z goes high based on the following output equation:

$$Z = F_2 \overline{F}_1 \overline{F}_0$$

 Note: All of these equations would be different, given different flip-flop assignments!

CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto Fall 2020

The content of this lecture is adapted from the lectures of Larry Zheng and Steve Engels