
CSCB58: 
Computer Organization

Prof. Gennady Pekhimenko

University of Toronto

Fall 2020

The content of this lecture is adapted from the lectures of 
Larry Zheng and Steve Engels



CSCB58 Week 5:
Summary

2



Week 5 Summary

We learned

• Counters

• Registers

• FSMs

3



Question #1

▪ Imagine you have access to a 4-bit register.

▪ What does the Write signal do?

Register
Write

Clock

D0D1D2D3

Q0Q1Q2Q3



Question #2

▪ Assume that you have access to a counter circuit:

▪ How do you make a signal that goes high after 10 clock cycles?

▪ How do you make a signal that goes high every 10 clock 
cycles?

Counter
EN

Clock

Clear

Q0Q1Q2Q3



Question #2 (cont’d)

▪ How do you make a signal that goes high every 100 clock 
cycles, only using 4-bit counters like the one below (and a few 
additional gates)?

Counter
EN

Clock

Clear

Q0Q1Q2Q3



Question #3

▪ How many flip-
flops would you 
need to implement 
the following finite 
state machine 
(FSM)?
 11 states

 # flip-flops = 
log2 (# of states)

 # flip-flops = 4

Zero Five

Twenty-Five

Ten Fifteen

Thirty-Five

Twenty

Forty-FiveForty

Fifty

Thirty

10¢

10¢

10¢

10¢

10¢

10¢

10¢

10¢

10¢

5¢

5¢

5¢

5¢

5¢

5¢

5¢

5¢

5¢

5¢



Question #4

▪ How would we make the following Finite 
State Machine?



Exploding pen continued…



Making the James Bond pen

▪ Pen starts off in
disarmed state.

▪ When clicked 
three times, pen
arms itself.

▪ When clicked three more times, pen disarms 
itself.

▪ What are the steps to making this circuit?



Reminder: How to Design FSM

▪ As a brief reminder:

1. Draw state diagram

2. Derive state table from state diagram

3. Assign flip-flop configuration to each state

 Number of flip-flops needed is: log(# of states) 

4. Redraw state table with flip-flop values

5. Derive combinational circuit for output and for each flip-flop input.



Review of FSMs

▪ Step 5 requires two 
combinational circuit 
design tasks.

 For Moore machines 
(pictured bottom right), 
output is determined 
solely based on current 
state (i.e. flip-flop 
values).

Combinational 
Circuit

Inputs Outputs

Storage 
Units

State 
Logic

Inputs

Outputs
Flip-
Flops

Output 
Logic



Review of FSMs

▪ For Mealy machines, 
output is determined 
by both the current 
state and the current 
input values.

 For simplicity, most of 
our examples will focus 
on Moore machines.

Combinational 
Circuit

Inputs Outputs

Storage 
Units

State 
Logic

Inputs

Outputs
Flip-
Flops

Output 
Logic



State diagrams with output

▪ Output values are incorporated into the state 
diagram, depending on the machine used.

A/0 B/1

1

Input(s)State/ 

Output(s)

➢Moore Machine 

C D
1/0

Input(s) / 

Output(s)State

➢Mealy Machine 



FSM Example: Barcode Reader

▪ When scanning UPC 
barcodes, the laser 
scanner looks for black 
and white bars that
indicate the start of the code.

▪ If black is read as a 1 and white is read as a 0, 
the start of the code (from either direction) 
has a 1010 pattern.

 Can you create a state machine that detects this 
pattern?



Step #1: Draw state diagram

A

B

1

0

C

0

D

1

E

00

0

1

1

1



Step #2: State Table

▪ Output Z is determined
by the current state.

 Denotes Moore machine.

▪ Next step: allocate flip-
flops values to each state.

 How many flip-flops will
we need for 5 states?

 Recall: 

 # flip-flops = log(# of states) 

Present 

State
Z X

Next 

State

A 0 0 A

A 0 1 B

B 0 0 C

B 0 1 B

C 0 0 A

C 0 1 D

D 0 0 E

D 0 1 B

E 1 0 A

E 1 1 D



Step #3: Flip-Flop Assignment

▪ 3 flip-flops
needed here.

▪ Assign states 
carefully though!

▪ Can’t simply do this:

➢A = 100

➢C = 010

➢E = 000

A

B

1

0

C

0

D

1

E

00

0

1

1

1

➢B = 011

➢D = 001

Why not?



Step #3: Flip-Flop Assignment

▪ Be careful of 
race conditions.

▪ Better solution:

➢ A = 000

➢ C = 011

➢ E = 100

• Still has race conditions (C→D, C→A), but is safer.

• “Safer” is defined according to output behaviour.

• Sometimes, extra flip-flops are used for extra insurance.

A

B

1

0

C

0

D

1

E

00

0

1

1

1

➢B = 001

➢D = 101



Present 

State
Z X

Next 

State

A 0 0 A

A 0 1 B

B 0 0 C

B 0 1 B

C 0 0 A

C 0 1 D

D 0 0 E

D 0 1 B

E 1 0 A

E 1 1 D

Step #4: Redraw State Table

▪ From here, we can 
construct the K-maps 
for the state logic
combinational circuit.

 Derive equations for each
flip-flop value, given the
previous values and the
input X.

 Three equations total,
plus one more for Z (trivial for Moore machines).

Present 

State
Z X

Next 

State

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1

0 0 1 0 0 0 1 1

0 0 1 0 1 0 0 1

0 1 1 0 0 0 0 0

0 1 1 0 1 1 0 1

1 0 1 0 0 1 0 0

1 0 1 0 1 0 0 1

1 0 0 1 0 0 0 0

1 0 0 1 1 1 0 1



Step 5: Circuit design

▪ Karnaugh map for F2:

F0·X F0·X F0·X F0·X

F2·F1 0 0 0 0

F2·F1 X X 1 0

F2·F1 X X X X

F2·F1 0 1 0 1

F2 = F1X + F2F0X + F2F0X 



Step 5: Circuit design

▪ Karnaugh map for F1:

F0·X F0·X F0·X F0·X

F2·F1 0 0 0 1

F2·F1 X X 0 0

F2·F1 X X X X

F2·F1 0 0 0 0

F1 = F2F1F0X 



Step 5: Circuit design

▪ Karnaugh map for F0:

F0·X F0·X F0·X F0·X

F2·F1 0 1 1 1

F2·F1 X X 1 0

F2·F1 X X X X

F2·F1 0 1 1 0

F0 = X + F2F1F0



Step 5: Circuit design

▪ Output value Z goes high based on the 
following output equation:

▪ Note: All of these equations would be 
different, given different flip-flop 
assignments!

Z = F2F1F0



CSCB58: 
Computer Organization

Prof. Gennady Pekhimenko

University of Toronto

Fall 2020

The content of this lecture is adapted from the lectures of 
Larry Zheng and Steve Engels


