
CSCB58: 
Computer Organization

Prof. Gennady Pekhimenko

University of Toronto

Fall 2020

The content of this lecture is adapted from the lectures of 
Larry Zheng and Steve Engels



CSCB58 Week 5:
Summary

2



Week 5 Summary

We learned

• Counters

• Registers

• FSMs

3



Question #1

▪ Imagine you have access to a 4-bit register.

▪ What does the Write signal do?

Register
Write

Clock

D0D1D2D3

Q0Q1Q2Q3



Question #2

▪ Assume that you have access to a counter circuit:

▪ How do you make a signal that goes high after 10 clock cycles?

▪ How do you make a signal that goes high every 10 clock 
cycles?

Counter
EN

Clock

Clear

Q0Q1Q2Q3



Question #2 (cont’d)

▪ How do you make a signal that goes high every 100 clock 
cycles, only using 4-bit counters like the one below (and a few 
additional gates)?

Counter
EN

Clock

Clear

Q0Q1Q2Q3



Question #3

▪ How many flip-
flops would you 
need to implement 
the following finite 
state machine 
(FSM)?
 11 states

 # flip-flops = 
log2 (# of states)

 # flip-flops = 4

Zero Five

Twenty-Five

Ten Fifteen

Thirty-Five

Twenty

Forty-FiveForty

Fifty

Thirty

10¢

10¢

10¢

10¢

10¢

10¢

10¢

10¢

10¢

5¢

5¢

5¢

5¢

5¢

5¢

5¢

5¢

5¢

5¢



Question #4

▪ How would we make the following Finite 
State Machine?



Exploding pen continued…



Making the James Bond pen

▪ Pen starts off in
disarmed state.

▪ When clicked 
three times, pen
arms itself.

▪ When clicked three more times, pen disarms 
itself.

▪ What are the steps to making this circuit?



Reminder: How to Design FSM

▪ As a brief reminder:

1. Draw state diagram

2. Derive state table from state diagram

3. Assign flip-flop configuration to each state

 Number of flip-flops needed is: log(# of states) 

4. Redraw state table with flip-flop values

5. Derive combinational circuit for output and for each flip-flop input.



Review of FSMs

▪ Step 5 requires two 
combinational circuit 
design tasks.

 For Moore machines 
(pictured bottom right), 
output is determined 
solely based on current 
state (i.e. flip-flop 
values).

Combinational 
Circuit

Inputs Outputs

Storage 
Units

State 
Logic

Inputs

Outputs
Flip-
Flops

Output 
Logic



Review of FSMs

▪ For Mealy machines, 
output is determined 
by both the current 
state and the current 
input values.

 For simplicity, most of 
our examples will focus 
on Moore machines.

Combinational 
Circuit

Inputs Outputs

Storage 
Units

State 
Logic

Inputs

Outputs
Flip-
Flops

Output 
Logic



State diagrams with output

▪ Output values are incorporated into the state 
diagram, depending on the machine used.

A/0 B/1

1

Input(s)State/ 

Output(s)

➢Moore Machine 

C D
1/0

Input(s) / 

Output(s)State

➢Mealy Machine 



FSM Example: Barcode Reader

▪ When scanning UPC 
barcodes, the laser 
scanner looks for black 
and white bars that
indicate the start of the code.

▪ If black is read as a 1 and white is read as a 0, 
the start of the code (from either direction) 
has a 1010 pattern.

 Can you create a state machine that detects this 
pattern?



Step #1: Draw state diagram

A

B

1

0

C

0

D

1

E

00

0

1

1

1



Step #2: State Table

▪ Output Z is determined
by the current state.

 Denotes Moore machine.

▪ Next step: allocate flip-
flops values to each state.

 How many flip-flops will
we need for 5 states?

 Recall: 

 # flip-flops = log(# of states) 

Present 

State
Z X

Next 

State

A 0 0 A

A 0 1 B

B 0 0 C

B 0 1 B

C 0 0 A

C 0 1 D

D 0 0 E

D 0 1 B

E 1 0 A

E 1 1 D



Step #3: Flip-Flop Assignment

▪ 3 flip-flops
needed here.

▪ Assign states 
carefully though!

▪ Can’t simply do this:

➢A = 100

➢C = 010

➢E = 000

A

B

1

0

C

0

D

1

E

00

0

1

1

1

➢B = 011

➢D = 001

Why not?



Step #3: Flip-Flop Assignment

▪ Be careful of 
race conditions.

▪ Better solution:

➢ A = 000

➢ C = 011

➢ E = 100

• Still has race conditions (C→D, C→A), but is safer.

• “Safer” is defined according to output behaviour.

• Sometimes, extra flip-flops are used for extra insurance.

A

B

1

0

C

0

D

1

E

00

0

1

1

1

➢B = 001

➢D = 101



Present 

State
Z X

Next 

State

A 0 0 A

A 0 1 B

B 0 0 C

B 0 1 B

C 0 0 A

C 0 1 D

D 0 0 E

D 0 1 B

E 1 0 A

E 1 1 D

Step #4: Redraw State Table

▪ From here, we can 
construct the K-maps 
for the state logic
combinational circuit.

 Derive equations for each
flip-flop value, given the
previous values and the
input X.

 Three equations total,
plus one more for Z (trivial for Moore machines).

Present 

State
Z X

Next 

State

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1

0 0 1 0 0 0 1 1

0 0 1 0 1 0 0 1

0 1 1 0 0 0 0 0

0 1 1 0 1 1 0 1

1 0 1 0 0 1 0 0

1 0 1 0 1 0 0 1

1 0 0 1 0 0 0 0

1 0 0 1 1 1 0 1



Step 5: Circuit design

▪ Karnaugh map for F2:

F0·X F0·X F0·X F0·X

F2·F1 0 0 0 0

F2·F1 X X 1 0

F2·F1 X X X X

F2·F1 0 1 0 1

F2 = F1X + F2F0X + F2F0X 



Step 5: Circuit design

▪ Karnaugh map for F1:

F0·X F0·X F0·X F0·X

F2·F1 0 0 0 1

F2·F1 X X 0 0

F2·F1 X X X X

F2·F1 0 0 0 0

F1 = F2F1F0X 



Step 5: Circuit design

▪ Karnaugh map for F0:

F0·X F0·X F0·X F0·X

F2·F1 0 1 1 1

F2·F1 X X 1 0

F2·F1 X X X X

F2·F1 0 1 1 0

F0 = X + F2F1F0



Step 5: Circuit design

▪ Output value Z goes high based on the 
following output equation:

▪ Note: All of these equations would be 
different, given different flip-flop 
assignments!

Z = F2F1F0



CSCB58: 
Computer Organization

Prof. Gennady Pekhimenko

University of Toronto

Fall 2020

The content of this lecture is adapted from the lectures of 
Larry Zheng and Steve Engels


