CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto
Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

CSCB58 Week 4:
 Summary

Week 4 Summary

We learned

- Sequential circuits - circuits with memory
- Latches
- Flip-flops

Latches

- If multiple gates of these types (NAND or NOR with feedback) are combined, you can get more steady behaviour.

- These circuits are called latches.

$S^{\prime} R^{\prime}$ Latch

S'R' latch

$\overline{\mathbf{S}}$	$\overline{\mathbf{R}}$	\mathbf{Q}_{T}	$\overline{\mathbf{Q}}_{\mathbf{T}}$	$\mathbf{Q}_{\mathrm{T}+1}$	$\overline{\mathbf{Q}}_{\mathrm{T}+1}$
0	0	X	X	1	1
0	1	X	X	1	0
1	0	X	X	0	1
1	1	0	1	0	1
1	1	1	0	1	0

- S and R are called "set" and "reset" respectively.
- When $S^{\prime}=0, R^{\prime}=1, Q$ is 1
- When $S^{\prime}=1, R^{\prime}=0, Q$ is 0
- When $S^{\prime} R^{\prime}=11$, same as previous state (01 or 10)
- How about going from oo to 11
- Depends on whether it changes from 00 to 01 to 11, or from 00 to 10 to 11 (race condition)
- unstable behaviour

Clocked SR latch

- By adding another layer of NAND gates to the $\bar{S} \bar{R}$ latch, we end up with a clocked SR latch circuit.
- The clock is often connected to a pulse signal that alternates regularly between 0 and 1.

D latch

Edge-triggered flip-flop

- Positive-edge triggered flip-flops

- These are the most commonly-used flip-flop circuits (and our choice for the course).

Question \#1

- What are the output values from Q and \bar{Q} given the following inputs on S, R and C ?

Time	\mathbf{S}	\mathbf{R}	\mathbf{C}	\mathbf{Q}	$\overline{\mathbf{Q}}$
$\boldsymbol{\downarrow}$	0	0	1		
1	0	1			
1	0	0			
0	0	0			
0	1	0			
0	1	1			

\mathbf{S}	\mathbf{R}	\mathbf{C}	\mathbf{Q}	$\overline{\mathbf{Q}}$
0	0	1		
1	0	1		
1	0	0		
0	0	0		
0	1	0		
0	1	1		

Question \#2

- Given the circuit on the right and the input waveform below, what will the outputs be on Q_{L} and Q_{F} ?
- What other info do you need?

Question \#3

- Assuming the Q outputs of both flip-flops start off low, what will the value of X \& Y be over the next few clock cycles?
- also assume positive edge trigger.

CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto
Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

