CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto Fall 2020

The content of this lecture is adapted from the lectures of Larry Zheng and Steve Engels

CSCB58 Week 4: Summary

Week 4 Summary

We learned

- Sequential circuits circuits with memory
- Latches
- Flip-flops

Latches

 If multiple gates of these types (NAND or NOR with feedback) are combined, you can get more steady behaviour.

These circuits are called latches.

S'R' Latch

- S and R are called "set" and "reset" respectively.
- When S' = 0, R' = 1, Q is 1
- When S' = 1, R' = 0, Q is 0
- When S'R' = 11, same as previous state (01 or 10)
- How about going from oo to 11
 - Depends on whether it changes from 00 to 01 to 11, or from 00 to 10 to 11 (race condition)
 - unstable behaviour

 \overline{Q}_{T+1}

1

 $\left(\right)$

1

 $\left(\right)$

 Q_{T+1}

0

 $\left(\right)$

Х

Х

Х

Clocked SR latch

- By adding another layer of NAND gates to the SR latch, we end up with a clocked SR latch circuit.
- The clock is often connected to a pulse signal that alternates regularly between 0 and 1.

D latch

Edge-triggered flip-flop

Positive-edge triggered flip-flops

 These are the most commonly-used flip-flop circuits (and our choice for the course).

Question #1

What are the output values from Q and Q
given the following inputs on S, R and C?

Time	S	R	С	Q	Q
	0	0	1		
	1	0	1		
	1	0	0		
	0	0	0		
	0	1	0		
V	0	1	1		

S	R	С	Q	Q
0	0	1		
1	0	1		
1	0	0		
0	0	0		
0	1	0		
0	1	1		

Question #2

 Given the circuit on the right and the input waveform below, what will the outputs be on Q_L and Q_F?

What other info do you need?

Question #3

 Assuming the Q outputs of both flip-flops start off low, what will the value of X & Y be over the next few clock cycles?

also assume positive edge trigger.

CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto Fall 2020

The content of this lecture is adapted from the lectures of Larry Zheng and Steve Engels