CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto
Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

CSCB58 Week 3:
 Summary

Week 3 review

- Building
- Mux/demux
- Decoders
- Adders
- Subtractors
- Comparators

Comparators

Comparators

- A circuit that takes in two input vectors, and determines if the first is greater than, less than or equal to the second.
- How does one make that in a circuit?

Basic Comparators

- Consider two binary numbers

A and B, where A and B are one bit long.
- The circuits for this would be:
- $A==B$:
- $A>B$:
- $\mathrm{A}<\mathrm{B}$:

Basic Comparators

- What if A and B are two bits long?
- The terms for this circuit for have to expand to reflect the second signal.
- For example:

- $A==B$:

$$
\left(\mathrm{A}_{1} \cdot \mathrm{~B}_{1}+\overline{\mathrm{A}}_{1} \cdot \overline{\mathrm{~B}}_{1}\right) \cdot\left(\mathrm{A}_{0} \cdot \mathrm{~B}_{0}+\overline{\mathrm{A}}_{0} \cdot \overline{\mathrm{~B}}_{0}\right)
$$

Basic Comparators

- What about checking if A is greater than B ?

- $A>B$:

- $\mathrm{A}<\mathrm{B}$:

$$
\overline{\mathrm{A}}_{1} \cdot \mathrm{~B}_{1}+\left(\mathrm{A}_{1} \cdot \mathrm{~B}_{1}+\overline{\mathrm{A}}_{1} \cdot \overline{\mathrm{~B}}_{1}\right) \cdot\left(\overline{\mathrm{A}}_{0} \cdot \mathrm{~B}_{0}\right)
$$

$\mathrm{A}>\mathrm{B}$ if and only if $\mathrm{A} 1>\mathrm{B} 1$ or $(\mathrm{A} 1=\mathrm{B} 1$ and $\mathrm{A} 0>\mathrm{B} 0)$

General Comparators

- The general circuit for comparators requires you to define equations for each case.
- Case \#1: Equality
- If inputs A and B are equal, then all bits must be the same.
- Define X_{i} for any digit i:
- (equality for digit i)

$$
X_{i}=A_{i} \cdot B_{i}+\bar{A}_{i} \cdot \bar{B}_{i}
$$

- Equality between A and B is defined as:

$$
\mathrm{A}==\mathrm{B}: \mathrm{X}_{0} \cdot \mathrm{X}_{1} \cdot \ldots \cdot \mathrm{X}_{\mathrm{n}}
$$

Comparators

- Case \#2: A > B
- The first non-matching bits occur at bit i, where $A_{i}=1$ and $B_{i}=0$. All higher bits match.
- Using the definition for X_{i} from before:

$$
A>B=A_{n} \cdot \bar{B}_{n}+X_{n} \cdot A_{n-1} \cdot \bar{B}_{n-1}+\ldots+A_{0} \cdot \bar{B}_{0} \cdot \prod_{k=1}^{n} X_{k}
$$

- Case \#3: A < B
- The first non-matching bits occur at bit i, where $A_{i}=0$ and $B_{i}=1$. Again, all higher bits match.

$$
A<B=\bar{A}_{n} \cdot B_{n}+X_{n} \cdot \bar{A}_{n-1} \cdot B_{n-1}+\ldots+\bar{A}_{0} \cdot B_{0} \cdot \prod_{k=1}^{n} X_{k}
$$

Comparator truth table

- Given two input vectors of size $n=2$, output of circuit is shown at right.

Inputs							
\boldsymbol{A}_{1}	\boldsymbol{A}_{0}	\boldsymbol{B}_{1}	\boldsymbol{B}_{0}	$\boldsymbol{A}<\boldsymbol{B}$	$\boldsymbol{A} \boldsymbol{=} \boldsymbol{B}$	$\boldsymbol{A} \boldsymbol{>} \boldsymbol{B}$	
0	0	0	0	0	1	0	
0	0	0	1	1	0	0	
0	0	1	0	1	0	0	
0	0	1	1	1	0	0	
0	1	0	0	0	0	1	
0	1	0	1	0	1	0	
0	1	1	0	1	0	0	
0	1	1	1	1	0	0	
1	0	0	0	0	0	1	
1	0	0	1	0	0	1	
1	0	1	0	0	1	0	
1	0	1	1	1	0	0	
1	1	0	0	0	0	1	
1	1	0	1	0	0	1	
1	1	1	0	0	0	1	
1	1	1	1	0	1	0	

Comparator example (cont'd)

$$
\mathrm{LT}=\mathrm{B}_{1} \cdot \overline{\mathrm{~A}}_{1}+\mathrm{B}_{0} \cdot \mathrm{~B}_{1} \cdot \overline{\mathrm{~A}}_{0}+\mathrm{B}_{0} \cdot \overline{\mathrm{~A}}_{0} \cdot \overline{\mathrm{~A}}_{1}
$$

Comparator example (cont'd)

$$
\mathrm{A}=\mathrm{B}:
$$

	$\overline{\mathbf{B}}_{0} \cdot \overline{\mathbf{B}}_{1}$	$\mathbf{B}_{0} \cdot \overline{\mathbf{B}}_{1}$	$\mathbf{B}_{0} \cdot \mathbf{B}_{1}$	$\overline{\mathrm{~B}}_{0} \cdot \mathbf{B}_{1}$
$\overline{\mathbf{A}}_{0} \cdot \overline{\mathbf{A}}_{1}$	1	0	0	0
$\mathbf{A}_{0} \cdot \overline{\mathrm{~A}}_{1}$	0	1	0	0
$\mathbf{A}_{0} \cdot \mathbf{A}_{1}$	0	0	1	0
$\bar{A}_{0} \cdot \mathbf{A}_{1}$	0	0	0	1

$$
\begin{aligned}
\mathrm{EQ}= & \overline{\mathrm{B}}_{0} \cdot \overline{\mathrm{~B}}_{1} \cdot \overline{\mathrm{~A}}_{0} \cdot \overline{\mathrm{~A}}_{1}+\mathrm{B}_{0} \cdot \overline{\mathrm{~B}}_{1} \cdot \mathrm{~A}_{0} \cdot \overline{\mathrm{~A}}_{1}+ \\
& \mathrm{B}_{0} \cdot \mathrm{~B}_{1} \cdot \mathrm{~A}_{0} \cdot \mathrm{~A}_{1}+\overline{\mathrm{B}}_{0} \cdot \mathrm{~B}_{1} \cdot \overline{\mathrm{~A}}_{0} \cdot \mathrm{~A}_{1}
\end{aligned}
$$

Comparator example (cont'd)

$A>B:$

	$\overline{\mathbf{B}}_{0} \cdot \overline{\mathbf{B}}_{1}$	$\mathbf{B}_{0} \cdot \overline{\mathbf{B}}_{1}$	$\mathbf{B}_{0} \cdot \mathbf{B}_{1}$	$\overline{\mathbf{B}}_{0} \cdot \mathbf{B}_{1}$
$\overline{\mathbf{A}}_{0} \cdot \overline{\mathbf{A}}_{1}$	0	0	0	0
$\mathbf{A}_{0} \cdot \overline{\mathrm{~A}}_{1}$	1	0	0	0
$\mathbf{A}_{0} \cdot \mathbf{A}_{1}$	1	1	0	1
$\bar{A}_{0} \cdot \mathbf{A}_{1}$	1	1	0	0

$$
\mathrm{GT}=\overline{\mathrm{B}}_{1} \cdot \mathrm{~A}_{1}+\overline{\mathrm{B}}_{0} \cdot \overline{\mathrm{~B}}_{1} \cdot \mathrm{~A}_{0}+\overline{\mathrm{B}}_{0} \cdot \mathrm{~A}_{0} \cdot \mathrm{~A}_{1}
$$

Comparing larger numbers

- As numbers get larger, the comparator circuit gets more complex.
- At a certain level, it can be easier sometimes to just process the result of a subtraction operation instead.
- Easier, less circuitry, just not faster.

Question \#1

a) How do you write the number 78 as an 8 -bit binary number?

\[

\]

b) What is the two's complement of 01101101?

$$
10010011
$$

c) What is the sum of 01101101 and 01101101 ?

$$
11011010
$$

III Question \#2

- What groupings are in the K-map on the right?

	$\overline{\mathbf{C}} \cdot \overline{\mathbf{D}}$	$\mathbf{C} \cdot \overline{\mathbf{D}}$	$\mathbf{C} \cdot \mathbf{D}$	$\overline{\mathbf{C}} \cdot \mathbf{D}$
$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$	1	1	X	1
$\mathbf{A} \cdot \overline{\mathbf{B}}$	X	0	X	1
$\mathbf{A} \cdot \mathbf{B}$	1	X	X	1
$\overline{\mathbf{A}} \cdot \mathbf{B}$	1	X	0	X

- What logic equations do these groupings represent?

$$
\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}}+\overline{\mathrm{C}}
$$

CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto
Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

