CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto Fall 2020

The content of this lecture is adapted from the lectures of Larry Zheng and Steve Engels

CSCB58 Week 2: Summary

Week 2 review

- Using logic gates
 - Combinational circuits
 - Circuit reduction
 - Karnaugh maps

- How can you express a two-input XOR gate as a combination of NAND and NOT gates?
 - Draw the circuit using only these two logic gates.

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

Υ

B

А

R

- Remember De Morgan's!
 - $(\overline{W} + \overline{Z}) = (\overline{W} \overline{Z})$

• How can you implement a NOT gate from a 2-input NAND gate?

• How can you implement a NOT gate from a 2-input NAND gate?

Question #3 - Minterms

• Write Y in SOM (Sum Of Minterms) form.

	A	B	С	Y
	0	0	0	0
$Y = \overline{A} \cdot \overline{B} \cdot \underline{C} + \overline{A} \cdot \overline{B} \cdot \overline{C} +$	0	0	1	1
$A \cdot B \cdot C + A \cdot B \cdot C$	0	1	0	1
	0	1	1	0
	1	0	0	1
$Y = m_1 + m_2 + m_4 + m_7$	1	0	1	0
	1	1	0	0
	1	1	1	1

• Given the minterms below, can you fill in the truth table on the right?

$$Y = m_2 + m_3 + m_7 + m_9 + m_{12} + m_{14}$$

A	В	С	D	Y
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

 What is the most reduced form, in sum of products form, of the function from the truth table on the right?

$$Y = m_0 + m_1 + m_2 + m_5 + m_7 + m_8 + m_9 + m_{10} + m_{13} + m_{15}$$

A	В	С	D	Y
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Question #5 (cont'd)

$$Y = \overline{C} \cdot D + B \cdot D + \overline{B} \cdot \overline{D}$$

Question #5 (alternative)

• An alternative grouping:

$$Y = \overline{B} \cdot \overline{C} + B \cdot D + \overline{B} \cdot \overline{D}$$

Helpful Hint

CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto Fall 2020

The content of this lecture is adapted from the lectures of Larry Zheng and Steve Engels