CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto
Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

CSCB58 Week 2: Summary

Week 2 review

- Using logic gates
- Combinational circuits
- Circuit reduction
- Karnaugh maps

Digital Logic \& Design

Question \#1

- How can you express a two-input XOR gate as a combination of NAND and NOT gates?
- Draw the circuit using only these two logic gates.

\mathbf{A}	\mathbf{B}	\mathbf{Y}
0	0	0
0	1	1
1	0	1
1	1	0

- Remember De Morgan's!

- $(\bar{W}+\bar{Z})=(\bar{W})$

Question \#2

- How can you implement a NOT gate from a 2-input NAND gate?

Question \#2

- How can you implement a NOT gate from a 2-input NAND gate?

Question \#3 - Minterms

- Write Y in SOM (Sum Of Minterms) form.

Question \#4

- Given the minterms below, can you fill in the truth table on the right?

$$
\begin{gathered}
Y=m_{2}+m_{3}+m_{7}+m_{9} \\
+m_{12}+m_{14}
\end{gathered}
$$

A	B	C	D	Y
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Question \#5

- What is the most reduced form, in sum of products form, of the function from the truth table on the right?

$$
\begin{aligned}
Y=m_{0} & +m_{1}+m_{2}+m_{5} \\
& +m_{7}+m_{8}+m_{9} \\
& +m_{10}+m_{13}+m_{15}
\end{aligned}
$$

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{Y}
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1
				1

Question \#5 (cont'd)

	$\overline{\mathbf{C}} \cdot \overline{\mathbf{D}}$	$\overline{\mathbf{C}} \cdot \mathbf{D}$	$\mathbf{C} \cdot \mathbf{D}$	$\mathbf{C} \cdot \overline{\mathrm{D}}$
$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$	1	1	0	1
$\overline{\mathbf{A}} \cdot \mathbf{B}$	0	1	1	0
$\mathbf{A} \cdot \mathbf{B}$	0	1	1	0
$\mathbf{A} \cdot \overline{\mathbf{B}}$	1	1	0	1

$$
\mathrm{Y}=\overline{\mathrm{C}} \cdot \mathrm{D}+\mathrm{B} \cdot \mathrm{D}+\overline{\mathrm{B}} \cdot \overline{\mathrm{D}}
$$

Question \#5 (alternative)

- An alternative grouping:

	$\overline{\mathrm{C}} \cdot \overline{\mathrm{D}}$	$\overline{\mathrm{C}} \cdot \mathbf{D}$	$\mathrm{C} \cdot \mathrm{D}$	$\mathrm{C} \cdot \overline{\mathrm{D}}$
$\overline{\mathrm{A}} \cdot \overline{\mathbf{B}}$	1	1	0	1
$\overline{\mathbf{A}} \cdot \mathbf{B}$	0	1	1	0
$\mathbf{A} \cdot \mathbf{B}$	0	1	1	0
$\mathbf{A} \cdot \overline{\mathbf{B}}$		1	0	1

$$
\mathrm{Y}=\overline{\mathrm{B}} \cdot \overline{\mathrm{C}}+\mathrm{B} \cdot \mathrm{D}+\overline{\mathrm{B}} \cdot \overline{\mathrm{D}}
$$

Helpful Hint

CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto
Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

