CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto
Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

CSCB58 Week 12

Logistics

- Exam details
- 90 mins over Quercus
- Multiple choice, answers typed in, and writing on the paper -> upload image
- Selective oral verification (after the exam) to avoid plagiarism

Resources

- We ask that you restrict yourself to:
- Materials linked from the course website (slides, reading guides, the textbook)
- Our Zoom chat (for clarifications or if you have technical problems)
- In particular, please don't:
- Frantically google or search stack overflow (you shouldn't need them)
- Discuss the exam with anyone (except your cat, if you must)

Types of questions

- It's a Quercus quiz, similar to what we had already (just longer)
- In addition to conceptual questions, we could ask you to:
- Analyze a combinational circuit (including transistor diagrams)
- Design a combinational circuit
- Analyze a sequential circuit (or waveform)
- Design a sequential circuit or FSM

Types of questions (2)

- Set signals on processor datapath
- i.e., explain how an operation is performed on the processor
- Translate assembly to machine code and vice versa
- Write assembly code according to requirement
- Translate between assembly and pseudocode (C-like)
- Count hits in a cache
- Calculate throughput on a pipelined processor

How to study for final exam

1. Review lecture slides
2. Review what you did for labs
3. Review quizzes
4. Whenever confused, ask on piazza or come to office hours

Exam tips

- Pay attention to details
- Don't just skim over the slides and labs and "get the idea".
- Find a way to test yourself ...
- The quiz questions are the best examples of the questions we'll use.
- The questions in the textbook are the next best.
- Identify a process for solving each kind of problem.
- Ex: for assembly language questions, write in pseudocode and translate
- Ex: for design questions, create a truth table, then go to a k-map

Let's do some practice

Cache Parameters

- 128 B cache, 12-bit address, direct-mapped, 32 B blocks
- \#offset bits = log2 $(32)=5$
- \#sets = 128/32 = 4 sets
- \#set/index bits $=\log 2(4)=2$
- \#tags bits = 12-5-2 = 5

Cache Parameters (example)

- Example: ox600
- In binary: 000001100000
- 0000 0|11|0 0000
tag idx offset

Cache Operation

				1st	2nd			
						Set	V	Tag
Addr	Tag	Set	Offset			00		
0x070	00000	11	10000	M	H	01		
0x080	00001	00	00000	M	M	10		
0x068	00000	11	01000	H	H	11		
0x190	00011	00	10000	M	M			
0x084	00001	00	00100	M	M			
0x178	00010	11	11000	M	M			
0x08C	00001	00	01100	H	H			
0xFOO	11110	00	00000	M	M			
0x064	00000	11	00100	M	M			

Cache Parameters - 2

- 128 B cache, 12-bit address, 2-way/LRU, 32 B blocks
- \#offset bits = log2(32)=5
- \#sets = 128/(32*2) = 2 sets
- \#set/index bits $=\log 2(2)=1$
- \#tags bits = 12-5-2 = 6

Cache Operation (yet again ;)

Addr	Tag	Set	Offset	
2St				
0×070	000001	1	10000	
0×080	000010	0	00000	
0×068	000001	1	01000	
0×190	000110	0	10000	
0×084	000010	0	00100	
0×178	000101	1	11000	
$0 \times 08 C$	000010	0	01100	
$0 \times F 00$	111100	0	00000	
M	H	H	H	M
0×064	000001	1	00100	

Way 1				Way 0	
Set	LRU				V
0	Tag	V	Tag		
1					

K-Maps -> Truth table

Y	$\overline{C D}$	$\overline{C D}$	$\overline{C D}$	$C D$
$\overline{A B}$	1	1	0	1
$\overline{A B}$	0	1	0	0
$\bar{A} \bar{B}$	0	X	X	X
$A B$	1	0	1	1

Fill in the truth table on the right, given the Karnaugh map values above.

A	B	C	D	Y
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

K-Maps -> Truth table

Y	$\overline{C D}$	$\overline{C D}$	$\overline{C D}$	$C D$
$\overline{A B}$	1	1	0	1
$\overline{A B}$	0	1	0	0
$\overline{A B}$	0	X	X	X
$A B$	1	0	1	1

Fill in the truth table on the right, given the Karnaugh map values above.

A	B	C	D	Y
0	0	0	0	1
\bigcirc	0	0	1	1
0	0	1	0	1
\bigcirc	0	1	1	0
0	1	0	0	0
\bigcirc	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

K-Maps -> Truth table

Y	$\overline{C D}$	$\overline{C D}$	$\overline{C D}$	$C D$
$\overline{A B}$	1	1	0	1
$\overline{A B}$	0	1	0	0
$\bar{A} \bar{B}$	0	X	X	X
$A B$	1	0	1	1

	\bar{C}			
	\bar{C}	$\bar{C} D$	$C D$	$C \bar{D}$
$\bar{A} \bar{B}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\bar{A} B$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$A B$	$\mathbf{0}$	\mathbf{X}	\mathbf{X}	\mathbf{X}
$A \bar{B}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$

On the Karnaugh map above, draw the minterm groupings that would result in the most optimized circuit possible.

K-Maps -> Truth table

	\bar{C}	\bar{C}		
	\bar{C}	$C D$	$C \bar{D}$	
$\bar{A} \bar{B}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\bar{A} B$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$A B$	$\mathbf{0}$	\mathbf{X}	\mathbf{X}	\mathbf{X}
$A \bar{B}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$

$$
\mathbf{Y}=B^{\prime} D^{\prime}+A^{\prime} C^{\prime} D+A C
$$

Write the Boolean equation for the optimized groupings.

Binary numbers: add/sub

- Perform 10-17 in 6-bit binary numbers using 2's complement.
- Show each step of converting decimal to binary, converting to 2's complement, performing the subtraction, then converting the result back to decimal.
- 001010-010001 =
- = 001010 + 101111
- = 111001
- $=-7$

Decrypt assembly

	.data
len:	.word 5
list:	.word -4, 6, 7, -2, 1
	.text
main:	la \$s1, len
	lw \$t1, $0(\$ s 1)$
	addi \$t1, \$t1, -1
	la \$s0, list
	lw \$t2, $0(\$ s 0)$
alpha:	addi \$t1, \$t1, -1
	addi \$s0, \$s0, 4
	sub \$t3, \$t2, \$t0
	blez \$t3, beta
	add \$t2, \$t0, \$zero
beta:	bgtz St1, alpha
	add \$v0, \$zero, \$t2
	jr \$ra

Write the operation performed by an assembly program

Return the minimum item of an array

Datapath

Consider the datapaths below, highlight the path that the data needs to take, from start to finish: Increment the program counter by the value in $\$$ so.

Small Assembly

push \$t: Push the value in \$t onto the stack

addi \$sp, \$sp, -4

sw \$t, $0(\$ \mathrm{sp})$

CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto
Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

