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Logistics

▪ Next week’s lecture:

 wrapping up and exam review

▪ Exam details

 90 mins over Quercus

 Multiple choice, answers typed in, and writing on the paper -> upload 
image

 Selective oral verification (after the exam) to avoid plagiarism

3



Recap

▪ Function calls

▪ Stack, push, pop
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Next one

int factorial (int n) {

if (n == 0)

return 1;

else

return n * factorial(n-1);

}

Recursion!
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Recursion 
in Assembly

what recursion really is in hardware
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factorial(3)

p = 3 * factorial(2)

return p

factorial(2)

p = 2 * factorial(1)

return p

factorial(1)

p = 1*factorial(0)

return p

factorial (0)

p = 1 # Base!

return p

int factorial(int n) {

if (n==0)

return 1;

else

return n*factorial(n-1);

}
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Before writing assembly, we need to 
know explicitly where to store values

int factorial (int n) {

if (n == 0)

return 1;

else

return n * factorial(n-1);

}

Need to store …
• the value of n
• the value of n – 1
• the value factorial(n-1)
• the return value: 1 or n*factorial(n-1)
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Design decision #1: store values in registers

int factorial(int n) {

if (n==0)

return 1;

else

return n*fact(n-1);

}

• store n in $t0

• store n-1 in $t1

• store factorial(n-1) in $t2

• store return value in $t3

Does it work?
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• store n in $t0
• store n-1 in $t1
• store factorial(n-1) in $t2
• store return value in $t3

factorial(3)

p = 3 * factorial(2)

return p

factorial(2)

p = 2 * factorial(1)

return p

factorial(1)

p = 1*factorial(0)

return p

factorial (0)

p = 1 # Base!

return p

No, it doesn’t work.

Store n=3 in $t0

Store n=2 in $t0, 
the stored 3 is 

overwritten, lost!

Same problem for 
$t1, t2, t3
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A register is like a laundry 
basket -- you put your stuff 
there, but when you call 
another function (person), 
that person will use the 
same basket and take / 
mess up your stuff.

And yes, the other person 
will guarantee to use the 
same basket because …
the other person is YOU!
(because recursion) 
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So the correct design decision is 
to use ________ .Stack

Each recursive call has its own 
space for storing the values

Stores n=3 for 
factorial (3)

Stores n=2 for 
factorial (2)
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Two useful things about stack

1.It has a lot of space

2.Its LIFO order (last in first out) 
is suitable for implementing 
recursions (function calls).

13



LIFO order & recursive calls

factorial(2)

p = 2 * factorial(1)

return p

factorial(1)

p = 1*factorial(0)

return p

factorial (0)

p = 1 # Base!

return p

n = 2

n = 1

n = 0

14

Note: Everybody is 
getting the correct

basket because of LIFO!



Design decisions made, 
now let’s actually write the 
assembly code
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LIFO order & recursive calls

factorial(n=2)

r = factorial(1)

p = n * r; # RA1

return p # P2

factorial(n=1)

r = factorial(0)

p = n * r;  # RA2

return p #P1

factorial(n=0)

p = 1 # Base!

return p #P0

n = 2

n = 1

n = 0

RA0

RA1

int x = 2;

int y = factorial(x)

print(y) # RA0

RA2

n = 2

n = 1

RA0

RA1

P0 = 1

n = 2

RA0

P1 = 1

P2 = 2

RA2

n = 0

n = 1

RA1

P0 = 1 P1 = 1

RA0

n = 2
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Before making the recursive call
• pop argument n
• push argument n-1 (arg for recursive call)
• push return address (remember where to return)
• make the recursive call

After finishing the recursive call
• pop return value from recursive call
• pop return address
• compute return value
• push return value (so the upper call can get it)
• jump to return address

Actions in factorial (n)
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factorial(int n)
▪ Pop n off the stack

 Store in $t0

▪ If $t0 == 0,
 Push return value 1 onto stack
 Return to calling program

▪ If $t0 != 0,
 Push $t0 and $ra onto stack
 Calculate n-1
 Push n-1 onto stack
 Call factorial

 …time passes…

 Pop the result of factorial (n-1) from stack, store in $t2
 Restore $ra and $t0 from stack
 Multiply factorial (n-1) and n
 Push result onto stack
 Return to calling program

n → $t0
n-1 → $t1
fact(n-1) → $t2
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factorial(int n)
fact: lw $t0, 0($sp)

addi $sp, $sp, 4

bne $t0, $zero, not_base

addi $t0, $zero, 1

addi $sp, $sp, -4

sw $t0, 0($sp)

jr $ra

not_base: addi $sp, $sp, -4

sw $t0, 0($sp)

addi $sp, $sp, -4

sw $ra, 0($sp)

addi $t1, $t0, -1

addi $sp, $sp, -4

sw $t1, 0($sp)

jal fact

n → $t0
n-1 → $t1
fact(n-1) → $t2

▪ Pop n off the stack

 Store in $t0

▪ If $t0 == 0,

 Push return value 1 onto stack

 Return to calling program

▪ If $t0 != 0,

 Push $t0 and $ra onto stack

 Calculate n-1

 Push n-1 onto stack

 Call factorial

 Pop the result of factorial (n-1) from 
stack, store in $t2

 Restore $ra and $t0 from stack

 Multiply factorial (n-1) and n

 Push result onto stack

 Return to calling program
19

Note: codes on the slides are 
not guaranteed to be correct. 
You need to be able to find the 
errors and fix them.



factorial(int n)

lw $t2, 0($sp)

addi $sp, $sp, 4

lw $ra, 0($sp)

addi $sp, $sp, 4

lw $t0, 0($sp)

addi $sp, $sp, 4

mult $t0, $t2

mflo $t3

addi $sp, $sp, -4

sw $t3, 0($sp)

jr $ra

n → $t0
n-1 → $t1
fact(n-1) → $t2

▪ Pop n off the stack

 Store in $t0

▪ If $t0 == 0,

 Push return value 1 onto stack

 Return to calling program

▪ If $t0 != 0,

 Push $t0 and $ra onto stack

 Calculate n-1

 Push n-1 onto stack

 Call factorial

 Pop the result of factorial (n-1) from 
stack, store in $t2

 Restore $ra and $t0 from stack

 Multiply factorial (n-1) and n

 Push result onto stack

 Return to calling program
20

Note: codes on the slides are 
not guaranteed to be correct. 
You need to be able to find the 
errors and fix them.



Recursive programs

▪ Use of stack

 Before recursive call,
store the register 
values that you use
onto the stack, and 
restore them when you come back to that point.

 Store $ra as one of those values, to remember 
where each recursive call should return.

int factorial (int x) {

if (x==0)

return 1;

else

return x*factorial(x-1);

}
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Translated recursive program
(part 1)

main: addi $t0, $zero, 10 # call fact(10)

addi $sp, $sp, -4 #   by putting 10

sw $t0, 0($sp) #   onto stack

jal factorial # result will be

... #   on the stack

factorial: lw $a0, 4($sp) # get x from stack

bne $a0, $zero, rec # base case?

base: addi $t0, $zero, 1 # put return value

sw $t0, 4($sp) #   onto stack

jr $ra # return to caller

rec: addi $sp, $sp, -4 # store return

sw $ra, 0($sp) #   addr on stack

addi $a0, $a0, -1 # x--

addi $sp, $sp, -4 # push x on stack

sw $a0, 4($sp) #   for rec call

jal factorial # recursive call
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Note: codes on the slides 
are not guaranteed to be 
correct. You need to be 
able to find the errors and 
fix them.



Translated recursive program
(part 2)

▪ Note: jal always stores the next address location 
into $ra, and jr returns to that address.

(continued from part 1)

lw $v0, 0($sp) # get return value

addi $sp, $sp, 4 #   from stack

lw $ra, 0($sp) # restore return

addi $sp, $sp, 4 #   address value

lw $a0, 0($sp) # restore x value

addi $sp, $sp, 4 #   for this call

mult $a0, $v0 # x*fact(x-1)

mflo $t0 # fetch product

addi $sp, $sp, -4 # push product 

sw $t0, 0($sp) #   onto stack

jr $ra # return to caller
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Note: codes on the slides 
are not guaranteed to be 
correct. You need to be 
able to find the errors and 
fix them.



Assembly doesn’t support recursion

▪ Assembly programs are just a linear sequence of 
assembly instructions, where you jump to the beginning 
of the program over and over again…

Recursion comes from the stack

▪ …while sensibly storing and retrieving remembered 
values from the stack
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Factorial stack view

x:10 x:10

$ra #1

x:9

$ra #2

x:8

$ra #3

x:7

x:10

$ra #1

x:9

$ra #2

x:8

$ra #3

.

.

.

$ra #10

x:0

x:10

$ra #1

x:9

$ra #2

x:8

$ra #3

.

.

.

$ra #10

ret:1

ret:10!

Initial call to 
factorial

After 3rd call to 
factorial

Recursion 
reaches base 

case call

Base case 
returns 1 on 

the stack

Recursion 
returns to 
top level
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You can recurse too much

The stack is NOT of infinite size, so there 
is always a limit on the number of 
recursive calls that you can make.

When exceeds that limit, you get a stack 
overflow, all content of the stack will be 
dumped.
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Supporting Recursion in General

▪ The process we’ve defined is ad hoc

▪ We stored an argument on the stack. We saved the RA register.

But how do you support recursion generally?

▪ You must know the signature of the function you’re calling. The 
number of arguments is key so that you how many things to pop 
from the stack.

 This is why C has function prototypes.

▪ You need to store the values of all of the registers that you use.
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Optimization: Caller and Callee Saves

▪ To reduce the number of registers that need to be saved, MIPS 
uses caller save and callee save registers.

▪ The t registers are caller save: if you are using them and want 
to keep the value, save it before calling the function.

▪ The s registers are callee save: if you want to use them, you 
should save the values before using them.

What advantage does this scheme have?
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Interrupts and Exception
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A note on interrupts

▪ Interrupts take place when
an external event requires a
change in execution.

 Example: arithmetic
overflow, system calls
(syscall), Ctrl-C, undefined instructions.

 Usually signaled by an external input wire, 
which is checked at the end of each 
instruction.

 High priority, override other actions
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A note on interrupts

▪ Interrupts can be handled in two general ways:

 Polled handling: The processor branches to the address of 
interrupt handling code (interruption handler), which begins a 
sequence of instructions that check the cause of the exception, 
i.e., need to ask around to figure out what type of exception.

→This is what MIPS uses (syscall →CPU checks v0, etc)

 Vectored handling: The processor can branch to a different 
address for each type of exception. Each exception address is 
separated by only one word. A jump instruction is placed at 
each of these addresses for the handler code for that exception. 
So no need to ask around.
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Interrupt Handling

▪ In the case of polled interrupt handling, the processor 
jumps to exception handler code, based on the value in the 
cause register (see table).
 If the original program

can resume afterwards,
this interrupt handler
returns to program by
calling rfe instruction.

 Otherwise, the stack
contents are dumped
and execution will
continue elsewhere.

 The above happens in kernel mode.

0 (INT) external interrupt.

4 (ADDRL) address error exception (load or fetch)

5 (ADDRS) address error exception (store).

6 (IBUS) bus error on instruction fetch.

7 (DBUS) bus error on data fetch

8 (Syscall) Syscall exception

9 (BKPT) Breakpoint exception

10 (RI) Reserved Instruction exception

12 (OVF) Arithmetic overflow exception
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Interrupt Handling

▪ The exception handler is just assembly code.
 just like any other function

 … but it must NOT cause an error! (There is no one to handle it)

▪ One particularly useful error handler
 In the old days, error handling code useful take up 80% of the OS 

code.

 Many error handlings were later unified into one way

 General solution: ”kernel panic” -- dump information and ask human 
to reboot the computer.
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Parallelism

▪ Parallelism is the idea that you can derive benefit from 
completing multiple tasks simultaneously.
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Performance

When we discuss performance, we often consider the following 
two metrics:

▪ Latency: the length of time required to perform an operation.
 How long it takes to travel from A to B on Highway 401

 More about a single task. We learned about the timing analysis.

▪ Throughput: the number of operations that can be completed 
within a unit of time.
 How many cars arrive at B from A via Highway 401 per hour

 More about multiple tasks.

 Think about how your computer’s graphics card work. It tries to 
process many pixels simultaneously.
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Types of Parallelism in Hardware

▪ Spatial: Completing the same task multiple times at the same 
time.

▪ Temporal (pipelined): Breaking a task into pieces, so that 
multiple different instructions can be in process at the same 
time.

Don’t confuse this with locality!
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Spatial Parallelism
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Temporal Parallelism
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Spatial vs Temporal Parallelism (pic from DDCA)
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Pipelined Microarchitectures



Review: Executing a Program

▪ First, load the program into memory. 

▪ Set the program counter (PC) to the first instruction in 
memory and set the SP to the first empty space on the stack 

▪ Let instruction fetch/decode do the work! The processor can 
control what instruction is executed next. 

▪ When the process needs support from the operating system 
(OS), it will “trap” (“throw an exception”)  
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Execution Stages

▪ Fetch: Updating the PC and locating the instruction to execute. 

▪ Decode: Translating the instruction and reading inputs from the 
register file. 

▪ Execute / Address Computation: Using the ALU to compute an 
operation or calculate an address. 

▪ Memory Read or Write: Memory operations must access 
memory. Non-memory operations skip this. 

▪ Register Writeback: The result is written to the register file.
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Pipelining the Execution Stages
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without pipelining

with pipelining

latency: 950 ps

throughput: 1 instr. per 950 ps = ~1 billion / sec

latency: 5 x 250 = 1250 ps

throughput: 1 instr. per 250 ps = ~4 billion / sec

Fixed-length stages



Pipelined Datapath
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stages separated by 
pipeline registers



Hazard

▪ What happens if an instruction needs a value that has not 
been computed?

 This is a data hazard.

 Example: $t0 += 2 followed by $t0 += 3

▪ What if an instruction is changing the PC? Shouldn’t it 
complete before we fetch another instruction?

 This is a control hazard

 can happen when branching or jumping.
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Mitigating Hazards

▪ Data forwarding: a. k. a bypassing, values are available 
before they are written back, i.e., after the execute stage, 
results are available, and they can be forwarded to the 
stage that needs them.

 Don’t wait until MEM READ/WRITE or WRITE REG to finish!

 Requires some additional wiring in the CPU

▪ Stalls: Sometimes, you just have to wait.

 A stall (or no-op) keeps a pipeline stage from doing anything.
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Stalls and Performance

▪ Stalls throttle performance.

▪ Sometimes, we can predict a result. 

 e.g., branch prediction

 If we’re correct, then we get a performance win. 

 If we’re wrong, we “drop” the instruction that is using 
predicted values, and we’re almost no worse off. 

 Prediction is big business. It consumes a huge amount of 
the chip.
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Summary: Pipelining

▪ The pipelined design traded space for time: it added 
additional hardware to increase throughput.
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