
CSCB58:
Computer Organization

Prof. Gennady Pekhimenko

University of Toronto

Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

CSCB58 Week 12

2

Logistics

▪ Next week’s lecture:

 wrapping up and exam review

▪ Exam details

 90 mins over Quercus

 Multiple choice, answers typed in, and writing on the paper -> upload
image

 Selective oral verification (after the exam) to avoid plagiarism

3

Recap

▪ Function calls

▪ Stack, push, pop

4

Next one

int factorial (int n) {

if (n == 0)

return 1;

else

return n * factorial(n-1);

}

Recursion!
5

Recursion
in Assembly

what recursion really is in hardware

6

factorial(3)

p = 3 * factorial(2)

return p

factorial(2)

p = 2 * factorial(1)

return p

factorial(1)

p = 1*factorial(0)

return p

factorial (0)

p = 1 # Base!

return p

int factorial(int n) {

if (n==0)

return 1;

else

return n*factorial(n-1);

}

7

Before writing assembly, we need to
know explicitly where to store values

int factorial (int n) {

if (n == 0)

return 1;

else

return n * factorial(n-1);

}

Need to store …
• the value of n
• the value of n – 1
• the value factorial(n-1)
• the return value: 1 or n*factorial(n-1)

8

Design decision #1: store values in registers

int factorial(int n) {

if (n==0)

return 1;

else

return n*fact(n-1);

}

• store n in $t0

• store n-1 in $t1

• store factorial(n-1) in $t2

• store return value in $t3

Does it work?

9

• store n in $t0
• store n-1 in $t1
• store factorial(n-1) in $t2
• store return value in $t3

factorial(3)

p = 3 * factorial(2)

return p

factorial(2)

p = 2 * factorial(1)

return p

factorial(1)

p = 1*factorial(0)

return p

factorial (0)

p = 1 # Base!

return p

No, it doesn’t work.

Store n=3 in $t0

Store n=2 in $t0,
the stored 3 is

overwritten, lost!

Same problem for
$t1, t2, t3

10

A register is like a laundry
basket -- you put your stuff
there, but when you call
another function (person),
that person will use the
same basket and take /
mess up your stuff.

And yes, the other person
will guarantee to use the
same basket because …
the other person is YOU!
(because recursion)

11

So the correct design decision is
to use ________ .Stack

Each recursive call has its own
space for storing the values

Stores n=3 for
factorial (3)

Stores n=2 for
factorial (2)

12

Two useful things about stack

1.It has a lot of space

2.Its LIFO order (last in first out)
is suitable for implementing
recursions (function calls).

13

LIFO order & recursive calls

factorial(2)

p = 2 * factorial(1)

return p

factorial(1)

p = 1*factorial(0)

return p

factorial (0)

p = 1 # Base!

return p

n = 2

n = 1

n = 0

14

Note: Everybody is
getting the correct

basket because of LIFO!

Design decisions made,
now let’s actually write the
assembly code

15

LIFO order & recursive calls

factorial(n=2)

r = factorial(1)

p = n * r; # RA1

return p # P2

factorial(n=1)

r = factorial(0)

p = n * r; # RA2

return p #P1

factorial(n=0)

p = 1 # Base!

return p #P0

n = 2

n = 1

n = 0

RA0

RA1

int x = 2;

int y = factorial(x)

print(y) # RA0

RA2

n = 2

n = 1

RA0

RA1

P0 = 1

n = 2

RA0

P1 = 1

P2 = 2

RA2

n = 0

n = 1

RA1

P0 = 1 P1 = 1

RA0

n = 2

16

Before making the recursive call
• pop argument n
• push argument n-1 (arg for recursive call)
• push return address (remember where to return)
• make the recursive call

After finishing the recursive call
• pop return value from recursive call
• pop return address
• compute return value
• push return value (so the upper call can get it)
• jump to return address

Actions in factorial (n)

17

factorial(int n)
▪ Pop n off the stack

 Store in $t0

▪ If $t0 == 0,
 Push return value 1 onto stack
 Return to calling program

▪ If $t0 != 0,
 Push $t0 and $ra onto stack
 Calculate n-1
 Push n-1 onto stack
 Call factorial

 …time passes…

 Pop the result of factorial (n-1) from stack, store in $t2
 Restore $ra and $t0 from stack
 Multiply factorial (n-1) and n
 Push result onto stack
 Return to calling program

n → $t0
n-1 → $t1
fact(n-1) → $t2

18

factorial(int n)
fact: lw $t0, 0($sp)

addi $sp, $sp, 4

bne $t0, $zero, not_base

addi $t0, $zero, 1

addi $sp, $sp, -4

sw $t0, 0($sp)

jr $ra

not_base: addi $sp, $sp, -4

sw $t0, 0($sp)

addi $sp, $sp, -4

sw $ra, 0($sp)

addi $t1, $t0, -1

addi $sp, $sp, -4

sw $t1, 0($sp)

jal fact

n → $t0
n-1 → $t1
fact(n-1) → $t2

▪ Pop n off the stack

 Store in $t0

▪ If $t0 == 0,

 Push return value 1 onto stack

 Return to calling program

▪ If $t0 != 0,

 Push $t0 and $ra onto stack

 Calculate n-1

 Push n-1 onto stack

 Call factorial

 Pop the result of factorial (n-1) from
stack, store in $t2

 Restore $ra and $t0 from stack

 Multiply factorial (n-1) and n

 Push result onto stack

 Return to calling program
19

Note: codes on the slides are
not guaranteed to be correct.
You need to be able to find the
errors and fix them.

factorial(int n)

lw $t2, 0($sp)

addi $sp, $sp, 4

lw $ra, 0($sp)

addi $sp, $sp, 4

lw $t0, 0($sp)

addi $sp, $sp, 4

mult $t0, $t2

mflo $t3

addi $sp, $sp, -4

sw $t3, 0($sp)

jr $ra

n → $t0
n-1 → $t1
fact(n-1) → $t2

▪ Pop n off the stack

 Store in $t0

▪ If $t0 == 0,

 Push return value 1 onto stack

 Return to calling program

▪ If $t0 != 0,

 Push $t0 and $ra onto stack

 Calculate n-1

 Push n-1 onto stack

 Call factorial

 Pop the result of factorial (n-1) from
stack, store in $t2

 Restore $ra and $t0 from stack

 Multiply factorial (n-1) and n

 Push result onto stack

 Return to calling program
20

Note: codes on the slides are
not guaranteed to be correct.
You need to be able to find the
errors and fix them.

Recursive programs

▪ Use of stack

 Before recursive call,
store the register
values that you use
onto the stack, and
restore them when you come back to that point.

 Store $ra as one of those values, to remember
where each recursive call should return.

int factorial (int x) {

if (x==0)

return 1;

else

return x*factorial(x-1);

}

21

Translated recursive program
(part 1)

main: addi $t0, $zero, 10 # call fact(10)

addi $sp, $sp, -4 # by putting 10

sw $t0, 0($sp) # onto stack

jal factorial # result will be

... # on the stack

factorial: lw $a0, 4($sp) # get x from stack

bne $a0, $zero, rec # base case?

base: addi $t0, $zero, 1 # put return value

sw $t0, 4($sp) # onto stack

jr $ra # return to caller

rec: addi $sp, $sp, -4 # store return

sw $ra, 0($sp) # addr on stack

addi $a0, $a0, -1 # x--

addi $sp, $sp, -4 # push x on stack

sw $a0, 4($sp) # for rec call

jal factorial # recursive call

22

Note: codes on the slides
are not guaranteed to be
correct. You need to be
able to find the errors and
fix them.

Translated recursive program
(part 2)

▪ Note: jal always stores the next address location
into $ra, and jr returns to that address.

(continued from part 1)

lw $v0, 0($sp) # get return value

addi $sp, $sp, 4 # from stack

lw $ra, 0($sp) # restore return

addi $sp, $sp, 4 # address value

lw $a0, 0($sp) # restore x value

addi $sp, $sp, 4 # for this call

mult $a0, $v0 # x*fact(x-1)

mflo $t0 # fetch product

addi $sp, $sp, -4 # push product

sw $t0, 0($sp) # onto stack

jr $ra # return to caller

23

Note: codes on the slides
are not guaranteed to be
correct. You need to be
able to find the errors and
fix them.

Assembly doesn’t support recursion

▪ Assembly programs are just a linear sequence of
assembly instructions, where you jump to the beginning
of the program over and over again…

Recursion comes from the stack

▪ …while sensibly storing and retrieving remembered
values from the stack

24

Factorial stack view

x:10 x:10

$ra #1

x:9

$ra #2

x:8

$ra #3

x:7

x:10

$ra #1

x:9

$ra #2

x:8

$ra #3

.

.

.

$ra #10

x:0

x:10

$ra #1

x:9

$ra #2

x:8

$ra #3

.

.

.

$ra #10

ret:1

ret:10!

Initial call to
factorial

After 3rd call to
factorial

Recursion
reaches base

case call

Base case
returns 1 on

the stack

Recursion
returns to
top level

25

You can recurse too much

The stack is NOT of infinite size, so there
is always a limit on the number of
recursive calls that you can make.

When exceeds that limit, you get a stack
overflow, all content of the stack will be
dumped.

26

27

Supporting Recursion in General

▪ The process we’ve defined is ad hoc

▪ We stored an argument on the stack. We saved the RA register.

But how do you support recursion generally?

▪ You must know the signature of the function you’re calling. The
number of arguments is key so that you how many things to pop
from the stack.

 This is why C has function prototypes.

▪ You need to store the values of all of the registers that you use.

28

Optimization: Caller and Callee Saves

▪ To reduce the number of registers that need to be saved, MIPS
uses caller save and callee save registers.

▪ The t registers are caller save: if you are using them and want
to keep the value, save it before calling the function.

▪ The s registers are callee save: if you want to use them, you
should save the values before using them.

What advantage does this scheme have?

29

Interrupts and Exception

30

A note on interrupts

▪ Interrupts take place when
an external event requires a
change in execution.

 Example: arithmetic
overflow, system calls
(syscall), Ctrl-C, undefined instructions.

 Usually signaled by an external input wire,
which is checked at the end of each
instruction.

 High priority, override other actions

31

A note on interrupts

▪ Interrupts can be handled in two general ways:

 Polled handling: The processor branches to the address of
interrupt handling code (interruption handler), which begins a
sequence of instructions that check the cause of the exception,
i.e., need to ask around to figure out what type of exception.

→This is what MIPS uses (syscall →CPU checks v0, etc)

 Vectored handling: The processor can branch to a different
address for each type of exception. Each exception address is
separated by only one word. A jump instruction is placed at
each of these addresses for the handler code for that exception.
So no need to ask around.

32

Interrupt Handling

▪ In the case of polled interrupt handling, the processor
jumps to exception handler code, based on the value in the
cause register (see table).
 If the original program

can resume afterwards,
this interrupt handler
returns to program by
calling rfe instruction.

 Otherwise, the stack
contents are dumped
and execution will
continue elsewhere.

 The above happens in kernel mode.

0 (INT) external interrupt.

4 (ADDRL) address error exception (load or fetch)

5 (ADDRS) address error exception (store).

6 (IBUS) bus error on instruction fetch.

7 (DBUS) bus error on data fetch

8 (Syscall) Syscall exception

9 (BKPT) Breakpoint exception

10 (RI) Reserved Instruction exception

12 (OVF) Arithmetic overflow exception

33

Interrupt Handling

▪ The exception handler is just assembly code.
 just like any other function

 … but it must NOT cause an error! (There is no one to handle it)

▪ One particularly useful error handler
 In the old days, error handling code useful take up 80% of the OS

code.

 Many error handlings were later unified into one way

 General solution: ”kernel panic” -- dump information and ask human
to reboot the computer.

34

35

Parallelism

Parallelism

▪ Parallelism is the idea that you can derive benefit from
completing multiple tasks simultaneously.

36

Performance

When we discuss performance, we often consider the following
two metrics:

▪ Latency: the length of time required to perform an operation.
 How long it takes to travel from A to B on Highway 401

 More about a single task. We learned about the timing analysis.

▪ Throughput: the number of operations that can be completed
within a unit of time.
 How many cars arrive at B from A via Highway 401 per hour

 More about multiple tasks.

 Think about how your computer’s graphics card work. It tries to
process many pixels simultaneously.

37

Types of Parallelism in Hardware

▪ Spatial: Completing the same task multiple times at the same
time.

▪ Temporal (pipelined): Breaking a task into pieces, so that
multiple different instructions can be in process at the same
time.

Don’t confuse this with locality!

38

Spatial Parallelism

39

Temporal Parallelism

40

Spatial vs Temporal Parallelism (pic from DDCA)

41

42

Pipelined Microarchitectures

Review: Executing a Program

▪ First, load the program into memory.

▪ Set the program counter (PC) to the first instruction in
memory and set the SP to the first empty space on the stack

▪ Let instruction fetch/decode do the work! The processor can
control what instruction is executed next.

▪ When the process needs support from the operating system
(OS), it will “trap” (“throw an exception”)

43

Execution Stages

▪ Fetch: Updating the PC and locating the instruction to execute.

▪ Decode: Translating the instruction and reading inputs from the
register file.

▪ Execute / Address Computation: Using the ALU to compute an
operation or calculate an address.

▪ Memory Read or Write: Memory operations must access
memory. Non-memory operations skip this.

▪ Register Writeback: The result is written to the register file.

44

Pipelining the Execution Stages

45

without pipelining

with pipelining

latency: 950 ps

throughput: 1 instr. per 950 ps = ~1 billion / sec

latency: 5 x 250 = 1250 ps

throughput: 1 instr. per 250 ps = ~4 billion / sec

Fixed-length stages

Pipelined Datapath

46

stages separated by
pipeline registers

Hazard

▪ What happens if an instruction needs a value that has not
been computed?

 This is a data hazard.

 Example: $t0 += 2 followed by $t0 += 3

▪ What if an instruction is changing the PC? Shouldn’t it
complete before we fetch another instruction?

 This is a control hazard

 can happen when branching or jumping.

47

Mitigating Hazards

▪ Data forwarding: a. k. a bypassing, values are available
before they are written back, i.e., after the execute stage,
results are available, and they can be forwarded to the
stage that needs them.

 Don’t wait until MEM READ/WRITE or WRITE REG to finish!

 Requires some additional wiring in the CPU

▪ Stalls: Sometimes, you just have to wait.

 A stall (or no-op) keeps a pipeline stage from doing anything.

48

Stalls and Performance

▪ Stalls throttle performance.

▪ Sometimes, we can predict a result.

 e.g., branch prediction

 If we’re correct, then we get a performance win.

 If we’re wrong, we “drop” the instruction that is using
predicted values, and we’re almost no worse off.

 Prediction is big business. It consumes a huge amount of
the chip.

49

Summary: Pipelining

▪ The pipelined design traded space for time: it added
additional hardware to increase throughput.

50

CSCB58:
Computer Organization

Prof. Gennady Pekhimenko

University of Toronto

Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

