
CSCB58:
Computer Organization

Prof. Gennady Pekhimenko
University of Toronto

Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

CSCB58 Week 10

2

Recap

§ We started learning about assembly, instruction by instruction
§ Arithmetic operations
§ Logical operations
§ Branching
§ Jump
§ Comparison
§ How to implement if-else and loops

3

Only a few more
instructions left!

4

• Memory access
• System calls

5

Interacting with memory
§ All of the previous instructions perform

operations on registers and immediate values.
ú What about memory?

§ All programs must fetch values from memory
into registers, operate on them, and then store
the values back into memory.

§ Memory operations are I-type, with the form:

lw $t0, 12($s0)Load or store

Local data register

Register storing base
address of data value
in memory

Offset from memory address

6

Quick reminder

Word: 4-byte

Half-word: 2-byte

Byte: 1-byte

7

Load & store instructions
Instruction Opcode/Function Syntax Operation

lb 100000 $t, i ($s) $t = SE (MEM [$s + i]:1)

lbu 100100 $t, i ($s) $t = ZE (MEM [$s + i]:1)

lh 100001 $t, i ($s) $t = SE (MEM [$s + i]:2)

lhu 100101 $t, i ($s) $t = ZE (MEM [$s + i]:2)

lw 100011 $t, i ($s) $t = MEM [$s + i]:4

sb 101000 $t, i ($s) MEM [$s + i]:1 = LB ($t)

sh 101001 $t, i ($s) MEM [$s + i]:2 = LH ($t)

sw 101011 $t, i ($s) MEM [$s + i]:4 = $t

§ “b”, “h” and “w” correspond to “byte”, “half word” and
“word”, indicating the length of the data.

§ LB: lowest byte; LH: lowest half word

8

Examples

lh $t0, 12($s0)

Load a half-word (2 bytes) starting from MEM($s0 + 12),
sign-extend it to 4 bytes, and store in $t0

sb $t0, 12($s0)

Take the lowest byte of the word stored in $t0,
store it to memory starting from address $s0 + 12

9

A bit more about memory

§ The base + offset style is useful for arrays or stack
parameters, when multiple values are needed from
a given memory location.

§ Memory is also used to communicate with outside
devices, such as keyboards and monitors.

ú Known as memory-
mapped IO.

ú Can be used with polling or
with traps (interrupts)

10

§ A trap is a mechanism to pass control from your
program to the kernel.

§ In case of exceptions (arithmetic overflow) or interrupts (from I/O)
special kernel handlers are called.
ú A syscall is a type of trap that is voluntarily called.

§ More on interrupts / exceptions next week…

11

Traps

§ The syscall command
traps and gives control to
the operating system to
perform some actions
ú e.g. interacting with the user,

and exiting the program.

§ Use registers $a0 and $v0
to pass arguments

Service Syscall code ($v0) Input/Output

print_int 1 $4 is int to print

print_float 2 $f12 is float to print

print_double 3 $f12 (with $f13) is double to print

print_string 4 $4 is address of ASCIIZ string to print

read_int 5 $2 is int read

read_float 6 $f12 is float read

read_double 7 $f12 (with $f13) is doubleread

read_string 8 $4 is address of buffer, $5 is buffer
size in bytes

sbrk 9 $4 is number of bytes required, $2 is
address of allocated memory

exit 10

$4 is $a0, $2 is $v0

12

System calls

... And more services for different environments

syscall example

13

li $v0, 4 # $v0 stores syscall number, 4 is print_string

la $a0, promptA # $a0 stores the address of the string to print

syscall # check $v0 and $a0 and act accordingly

Arrays and Structs

14

Data storage
ú At the beginning of the program, create labels for memory

locations that are used to store values.
ú Always in form: label type value

.data
create a single integer variable with initial value 3
var1: .word 3

create a 4-element integer array

array0: .word 3, 7, 5, 42

create a 2-element character array with elements
initialized to a and b
array1: .byte 'a’, 'b'

allocate 40 consecutive bytes, with uninitialized
storage. Could be used as a 40-element character array,
or a 10-element integer array.
array2: .space 40

15

Integer type (int): 4 byte

Character type (char): 1 byte

16

Arrays!

§ Arrays in assembly language:
ú The address of the first element of the array is used to store and

access the elements of the array.

ú To access an element of the array, get the address of that element
by adding an offset distance to the address of the first element.

 offset = array index * the size of a single element

ú Arrays are stored in memory. For operations on them, fetch the
array values and store them in registers. Operate on them, then
store them back into memory.

int A[100], B[100];
for (i=0; i<100; i++) {

A[i] = B[i] + 1;
}

17

A[0] A[1] A[2] A[3] A[4] …

int A[100];

Offset = 4 x 4 bytes = 16 bytes

Address of A[4] = Address of A[0] + 16 (bytes)

18

19

int A[100], B[100];
for (i=0; i<100; i++) {

A[i] = B[i] + 1;
}

Translate this to assembly

Making sense of assembly code

§ The key to reading and designing assembly
code is recognizing portions of code that
represent higher-level operations that you’re
familiar with.

20

int A[100], B[100];
for (i=0; i<100; i++) {

A[i] = B[i] + 1;
}

Initialization:
• Allocate space
• Initial value i=0 (offset), put into

a register
• Put value size (400) in register
• Put addresses of A, B into

register

The loop:
• Put addrs of A[i] and B[i] into

registers (addr(A)+offset).
• Load B[i] from mem, then +1,

keep result in a register
• Store result into mem A[i]
• Update i++
• Check loop condition and jump

.data
A: .space 400
B: .space 400

.text
main: add $t0, $zero, $zero

addi $t1, $zero, 400
la $t8, A
la $t9, B

loop: add $t4, $t8, $t0
add $t3, $t9, $t0
lw $s4, 0($t3)
addi $t6, $s4, 1
sw $t6, 0($t4)
addi $t0, $t0, 4
bne $t0, $t1, loop

end:
21

Code with comments
.data
A: .space 400 # array of 400 bytes (100 ints)
B: .space 400 # array of 400 bytes (100 ints)

.text
main: add $t0, $zero, $zero # load “0” into $t0

addi $t1, $zero, 400 # load “400" into $t1
la $t9, B # store address of B
la $t8, A # store address of A

loop: add $t4, $t8, $t0 # $t4 = addr(A) + i
add $t3, $t9, $t0 # $t3 = addr(B) + i
lw $s4, 0($t3) # $s4 = B[i]
addi $t6, $s4, 1 # $t6 = B[i] + 1
sw $t6, 0($t4) # A[i] = $t6
addi $t0, $t0, 4 # $t0 = $t0++
bne $t0, $t1, loop # branch back if $t0<400

end:

22

int A[100], B[100];
for (i=0; i<100; i++) {

A[i] = B[i] + 1;
}

Structs

23

Example: A struct program
.data

a1: .space 12

.text
main: la $t0, a1

addi $t1, $zero, 5
sw $t1, 0($t0)
addi $t1, $zero, 42
sw $t1, 4($t0)
addi $t1, $zero, 12
sw $t1, 8($t0)

24

§ How can we figure out the main
purpose of this code?

§ The sw lines indicate that values in
$t1 are being stored at $t0,
$t0+4 and $t0+8.
ú Each previous line sets the value of
$t1 to store.

§ Therefore, this code stores the
values 5, 42 and 12 into the struct
at location a1.

Example: A struct program

.data
a1: .space 12

.text
main: la $t0, a1

addi $t1, $zero, 5
sw $t1, 0($t0)
addi $t1, $zero, 42
sw $t1, 4($t0)
addi $t1, $zero, 12
sw $t1, 8($t0)

struct foo {
int a;
int b;
int c;

};

struct foo x;
x.a= 5;
x.b = 42;
x.c = 12;

25

Struct program with comments
.data
a1: .space 12 # declare 12 bytes

of storage to hold
struct of 3 ints

.text
main: la $t0, a1 # load base address

of struct into
register $t0

addi $t1, $zero, 5 # $t1 = 5
sw $t1, 0($t0) # first struct

element set to 5;
indirect addressing

addi $t1, $zero, 42 # $t1 = 42
sw $t1, 4($t0) # second struct

element set to 42
addi $t1, $zero, 12 # $t1 = 12
sw $t1, 8($t0) # third struct

element set to 12
26

struct foo {
int a;
int b;
int c;

};

struct foo x;
x.a= 5;
x.b = 42;
x.c = 12;

Caveat: alignment

§ Suppose b is a char (one byte),
then it looks like that the
address of c would be $t0 + 5.

§ But this may not work because
MIPS by default requires store
addresses to be aligned based
on data size, i.e., address must
be a multiple of 4 for a word, 2
for a half word, etc.

27

struct foo {
int a;
char b;
int c;

};
struct foo x;
x.a= 5;
x.b = ‘B’;
x.c = 12;

.data
a1: .space 12

.text
main: la $t0, a1

addi $t1, $zero, 5
sw $t1, 0($t0)
addi $t1, $zero, ‘B’
sb $t1, 4($t0)
addi $t1, $zero, 12
sw $t1, 5($t0)ERROR

Function calls

28

int sign (int i) {
if (i > 0)

return 1;
else if (i < 0)

return -1;
else

return 0;
}

int x, r;
x = 42;
r = sign(x);
r = r + 1;
…

Another example:

A function!

Function
arguments!

Return!

29

Function arguments

int sign (int i) {
if (i > 0)

return 1;
else if (i < 0)

return -1;
else

return 0;
}

int x, r;
x = 42;
r = sign(x);
r = res + 1;
…

Where are the function
arguments stored?

They are stored at a certain
location in the memory,
which is call the stack.

30

Other conventions are also
possible, i.e., store first 4
arguments in $a0~$a3, the rest in
the stack

Note

§ Because assembly programmers have so much control over
how things are done at the low level, there are always multiple
ways of implementing a feature.

§ We need to define a convention of how function arguments
and return values are passed between functions, etc, so all
programmers working on the same project are on the same
page.

§ There can be many different version of the conventions.

31

Memory model: a quick look

Low address

High address

Stack grows this
way (going low)

Heap grows this
way (going high)

If they collide

32

Note: stack grows
backwards, i.e., when
stack pointer (top)
decreases, stack
becomes bigger; when
stack pointer increase,
stack becomes smaller.

Function arguments

int sign (int i) {
if (i > 0)

return 1;
else if (i < 0)

return -1;
else

return 0;
}

int x, r;
x = 42;
r = sign(x);
res = r + 1;
…

Why keep the arguments
in memory instead of
registers?

Because there aren’t
enough registers for this
• One function may have

many arguments
• If function calls subroutines,

all subroutines’ arguments
need to be remembered.
(can’t forget until function
returns)

33

You can use the registers to store function arguments if you
know you have enough registers to do so (e.g., one single-
argument function with no subroutines).

An assembly programmer makes this type of design decisions
and can do whatever they want.

For high-level language programmers, the complier makes
this type of decisions for them.

Note

34

How to access stack?

The address of the “top” of the stack is stored in
this register --$sp

lw $t0, 0($sp) # pop a word from the stack
addi $sp, $sp, 4 # update stack pointer, stack size smaller

addi $sp, $sp, -4 # move stack pointer to make space
sw $t0, 0($sp) # push a word onto the stack

POP a value from stack and store in $t0

PUSH value in $t0 into stack

35

The Stack

Address 0

Address N

Address 1

Byte

Stack

Stack
Pointer

Stack
grows this
way

Low address

High address

36

Pushing Values to the stack
Byte

Stack

sp

Stack
grows this
way

Stack

Low address

High address

4 bytes Pushed

addi $sp, $sp, -4
sw $t0, 0($sp)

37

Popping Values off the stack
Byte

Stack

sp
Stack
grows this
way

Low address

High address

4 bytes Popped

lw $t0, 0($sp)
addi $sp, $sp, 4

38

Return value/address

int sign (int i) {
if (i > 0)

return 1;
else if (i < 0)

return -1;
else

return 0;
}

int x, r;
x = 42;
r = sign(x);
res = r + 1;
…

How do we pass the return
value to the caller?
Answer: let’s use the stack.

Where do we keep the return
address?
Answer: let’s use $ra register.
To return: jr $ra

This is a design choice, NOT the
only way to do it

39

The whole story: “when Caller calls Callee”

int sign (int i) {
if (i > 0)

return 1;
else if (i < 0)

return -1;
else

return 0;
}

int x, r;
x = 42;
r = sign(x);
res = r + 1;
…

1. Caller pushes arguments to
the stack

2. Caller stores return address
to $ra

3. Callee invoked, pop
arguments from stack

4. Callee computes the return
value

5. Callee pushes the return
value into the stack

6. Jump to return addressed
stored in $ra

7. Caller pops return value
from the stack.

8. Move on to next line… 40

Now, ready to translate the code

int sign (int i) {
if (i > 0)

return 1;
else if (i < 0)

return -1;
else

return 0;
}

1. Callee invoked, pop arguments from stack
2. Callee computes the return value
3. Callee pushes the return value into the stack
4. Jump to return addressed stored in $ra
5. Caller get return value from the stack.

.text
sign: lw $t0, 0($sp)

addi $sp, $sp, 4
bgtz $t0, gt
beq $t0, $zero, eq
addi $t1, $zero, -1
j end

gt: addi $t1, $zero, 1
j end

eq: add $t1, $zero, $zero
end: addi $sp, $sp, -4

sw $t1, 0($sp)
jr $ra

41

Code with comments

.text
sign: lw $t0, 0($sp) # pop arg i from

addi $sp, $sp, 4 # the stack

bgtz $t0, gt # if (i > 0)
beq $t0, $zero, eq # if (i == 0)
addi $t1, $zero, -1 # i < 0, return value = -1
j end # jump to return

gt: addi $t1, $zero, 1 # i > 0, return value = 1
j end # jump to return

eq: add $t1, $zero, $zero # i == 0, return value = 0
end: addi $sp, $sp, -4 # push return value to

sw $t1, 0($sp) # the stack
jr $ra # return

42

Insights

When we make multiple levels of function calls, the
return address also need to be stored on stack, since
the deeper level function call will overwrite the $ra
registers. You will experience this in Lab 10.

Before calling a function all temporary register
values need to be pushed to the stack, too. After
returning from the called function, you restored the
register values from the stack and continue using
them. This also cost time.

int foo() {
int i, j;
i=5
j=6+i;
save temps to stack
bar();
restore from stack
i++;
printf(“%d %d”, i, j);

}

43

Insights
What we did is based on one function call convention that we defined,
there could be other conventions.

Function calls don’t happen for free, it involves manipulating the values of
several registers, and accessing memory.

All of these have performance implications.

Why “inline functions” are faster? Because the the callee assembly code is
inline with the the caller code (callee code is copied to everywhere its
called, rather than at a different location), so no need to jump, i.e., no stack
and $ra manipulations needed.

Now you really understand when to use inline, and when not to.
44

Insights

45

NAIVE
L = [……]
counter = 0
for x in L:
if x % 2 == 1:
counter +=1

return counter

BETTER
L = [……]
counter = 0
for x in L:

counter += (x % 2)
return counter

Insights

46

• Branching or jumping is in general less efficient than linear execution.
• Modern processors do prefetching, i.e., while you are executing a line of instruction,

the next line is already loaded from memory before you’re sure that’s the next line
to execute.
• This is made possible by using a pipelined architecture which enables parallelism
• It’s a speed boost, but it’d be wasted if you branch to a line different from the

next line.
• More advance modern processors have branch predictors, which try to guess which

way the branch goes before it’s known for sure.
• Most modern branch predictors have > 90% accuracy.
• Pro performance tip: know how your branch predictor works, and write your

code in such a way that the branch prediction is more likely to be correct.

47

i = 0
while i < 10000:

print(i)
i += 1

i = 0
while i < 1000:

print(i)
i += 1
print(i)
i += 1
print(i)
i += 1
print(i)
i += 1
print(i)
i += 1
print(i)
i += 1
print(i)
i += 1
print(i)
i += 1
print(i)
i += 1
print(i)
i += 1

Which performs better?

48

People who are really serious about software should
make their own hardware.

-- Steve Jobs quoting Alan Kay

Practice for home: String function

int strcpy (char x[], char y[]) {
int i;
i=0;
while ((x[i] = y[i]) != `\0’)

i += 1;
return i;

}

49

Translated string program

strcpy: lw $a0, 0($sp) # pop x address
addi $sp, $sp, 4 # off the stack

lw $a1, 0($sp) # pop y address
addi $sp, $sp, 4 # off the stack
add $s0, $zero, $zero # $s0 = offset i

L1: add $t1, $s0, $a0 # $t1 = x + i
lb $t2, 0($t1) # $t2 = x[i]
add $t3, $s0, $a1 # $t3 = y + i
sb $t2, 0($t3) # y[i] = $t2
beq $t2, $zero, L2 # y[i] = ‘/0’?
addi $s0, $s0, 1 # i++
j L1 # loop

L2: addi $sp, $sp, -4 # push i onto
sw $s0, 0($sp) # top of stack
jr $ra # return

initialization

main algorithm

end

50

