
CSCB58:
Computer Organization

Prof. Gennady Pekhimenko

University of Toronto

Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

CSCB58 Week 9

2

Read reg
1

Read reg 2

Write
reg

Write
data

Read
data 1

Read
data 2

Register
s

ALU
result

ZeroA

B

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instructi
on
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

0

1

0

1Memory
data

register

Memory
data

Memor
y

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1

P
C

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Opcode

Contr
ol

Unit

Shift left 2Sign
extend

The Blueprint of
a microprocessor

The Arithmetic ThingThe Storage Thing

The Controller Thing

3

aka: the Control Unit

The “Controller Thing”

4

The Control Unit controls how data flows
in the datapath.

Different executions have different flows.

5

Processor Datapath

▪ The datapath of a processor is a description/
illustration of how the data flows between
processor components during the execution of an
operation.

6

Datapath example

▪ The simplified
datapath for
most processor
operations has
stages as
shown in the
diagram:
 Instruction

fetch
 Instruction

decode &
register fetch

 Address/data
calculation

 Memory
access

 Write back.

Address (PC)

Instruction
Memory

Instruction +4

Register FileSign ext.

Mux Mux

Data
Memory

Mux

ALU

Mux

7

What happens when you run an
executable on your computer?

“./a.out”, “ls”, “fornite.exe”, …

1. The OS loads a bunch of instructions into
the memory at certain location.

2. CPU finds that location and executes the
instructions stored there one by one.

8

What does an instruction look like?

00000000 00000001 00111000 00100011

It’s a 32-bit (4-byte) binary string.

9

How do we remember the location of
the current instruction?

▪ The program counter (PC) is a special register
that stores the location of the current
instruction.

 Each instruction is 4 bytes long, thus we do +4 to
increments the current PC location.

 PC values can also be loaded from the result of an
ALU operation (e.g. jumps to a memory address).

10

So, here is the instruction. Do it!

00000000 00000001 00111000 00100011

What does the instruction mean?
What operations do I do?
Where do I get the inputs and put the output?

We need to decode the instruction.

11

Instruction decoding

▪ The instructions themselves can be broken
down into sections that contain all the
information needed to execute the operation.

 Also known as a control word.

▪ Example: unsigned subtraction

000000ss sssttttt ddddd000 00100011

00000000 00000001 00111000 00100011

Register 7 = Register 0 – Register 1

12

Instruction registers

▪ The instruction register takes in the 32-bit
instruction fetched from memory, and reads
the first 6 bits (known as the opcode) to
determine what operation to perform.

00000000 00000001 00111000 00100011

Instruction register

000000 00 00000001 00111000 00100011

00000 00001 00111 100011

13

Opcodes

▪ The first six digits
of the instruction
(the opcode) will
determine the
instruction type.
 Except for “R-type”

instructions
(marked in yellow)

 For these, opcode
is 000000, and last
six digits denote
the function.

Instruction Op/Func
add 100000

addu 100001

addi 001000

addiu 001001

div 011010

divu 011011

mult 011000

multu 011001

sub 100010

subu 100011

and 100100

andi 001100

nor 100111

or 100101

ori 001101

xor 100110

xori 001110

sll 000000

sllv 000100

sra 000011

Instruction Op/Func
srav 000111

srl 000010

srlv 000110

beq 000100

bgtz 000111

blez 000110

bne 000101

j 000010

jal 000011

jalr 001001

jr 001000

lb 100000

lbu 100100

lh 100001

lhu 100101

lw 100011

sb 101000

sh 101001

sw 101011

mflo 010010

14

MIPS instruction types

▪ R-type:

▪ I-type:

▪ J-type:

opcode rs rt

6 5

rd

5

shamt

5

funct

5 6

opcode rs rt

6 5

immediate

5 16

opcode address

6 26

Read the first 6 bits first, then you know how to break it down.
15

R-type instructions

▪ Short for “register-type” instructions.
 Because they operate on the registers, naturally.

▪ These instructions have fields for specifying up to
three registers and a shift amount.
 Three registers: two source registers (rs & rt) and one

destination register (rd).
 A field is usually coded with all 0 bits when not being used.

▪ The opcode for all R-type instructions is 000000.
▪ The function field specifies the type of operation

being performed (add, sub, and, etc).

opcode rs rt

6 5

rd

5

shamt

5

funct

5 6

16

Examples opcode rs rt

6 5

rd

5

shamt

5

funct

5 6

00000000 11010001 00101000 00100110

R-type!

Shift left (SLL)!

Reg 6! Reg 17! Reg 5!

Reg_5 = Reg_6 XOR Reg_17

00000000 11010001 00101011 00000000

R-type! Reg 17! Reg 5!

XOR!

12 bits!

Left shift what’s in Reg_17 by 12 bits
and store result in Reg_5

17

R-type instruction datapath

▪ For the most
part, the funct
field tells the
ALU what
operation to
perform.

▪ rs and rt are
sent to the
register file, to
specify the ALU
operands.

▪ rd is also sent
to the register
file, to specify
the location of
the result.

Address (PC)

Instruction
Memory

+4

Sign ext.

Data
Memory

ALU

Mux

Instruction

Register File

Mux Mux

Mux

ALU

18

I-type instructions

▪ These instructions have a 16-bit immediate field.

▪ This field a constant value, which is used for:

 an immediate operand,

 a branch target offset (e.g., in branch if equal op), or

 an offset for a memory operand (e.g., in load op).

opcode rs rt

6 5

immediate

5 16

19

I-type instructions

▪ For branch target offset operations, the immediate field
contains the signed difference between the current address
stored in the PC and the address of the target instruction.

 This offset is stored with the two low order bits dropped. The
dropped bits are always 0 since instructions are word-aligned.

opcode rs rt

6 5

immediate

5 16

20

Word-aligned

21

Every instruction is 4-byte (1 word) long,
so the starting address of each instruction is always a multiple of 4,
like

0 (0000)
4 (0100)
8 (1000)
12 (1100)
444 (110111100)

Note that the two lowest bits are always 00.
Since we know they are always 00, we don’t need to use two bits to remember them.

0 4 8 12 16

Examples opcode rs rt

6 5

immediate

5 16

00010000 11010001 00000000 00100110

Branch on equal
(BEQ)

Reg 6! Reg 17! Offset = 10011000 = 152

If Reg_6 == Reg_17:
PC += 152

Else:
PC += 4

22

Examples opcode rs rt

6 5

immediate

5 16

10000000 11010001 00000000 00100110

Load byte!
(LB)

Reg 6! Reg 17! Offset = 100110 = 38

Load one byte from MEM[Reg_6+38] to Reg_17

23

I-type instruction datapath

▪ Example #1:
Immediate
arithmetic
operations,
with result
stored in
registers.

Address (PC)

Instruction
Memory

+4

Sign ext.

Data
Memory

ALU

Mux

Instruction

Register File

Mux Mux

Mux

ALU

24

Interlude: Sign extension

▪ The immediately value we get from an I-type instruction is 16-
bit long.

▪ But all operands of ALU are supposed to be 32-bit long.

▪ So fill the upper 16 bits of the number with the sign-bit

▪ E.g., 1100 1000 1000 1000 becomes

▪ 1111 1111 1111 1111 1100 1000 1000 1000

25

Sign ext.

I-type instruction datapath

▪ Example #2:
Immediate
arithmetic
operations,
with result
stored in
memory.

Address (PC)

Instruction
Memory

+4

Sign ext.

Data
Memory

ALU

Mux

Instruction

Register File

Mux Mux

Mux

ALU

26

I-type instruction datapath

▪ Example #3:
Branch
instructions.

 Output is
written to
PC, which
looks to that
location for
the next
instruction.

Address (PC)

Instruction
Memory

+4

Sign ext.

Data
Memory

ALU

Mux

Instruction

Register File

Mux Mux

Mux

ALU

27

J-type instructions

▪ Only two J-type instructions:
 jump (j)
 jump and link (jal)

▪ These instructions use the 26-bit coded address field to
specify the target of the jump.
 The first four bits of the destination address are the same as the

current bits in the program counter.
 The bits in positions 27 to 2 in the address are the 26 bits

provided in the instruction.
 The bits at positions 1 and 0 are always 0 since instructions are

word-aligned.

opcode address

6 26

28

Examples

00001000 11010001 00000000 00100110

Jump (J) destination address= {PC[31:28], whats-above, 00}

PC jumps to address
{PC[31:28] (4 bits), what’s above (26 bits), 00 (2 bits)}
(32 bits total)

opcode address

6 26

29

J-type instruction datapath

▪ Jump and
branch use the
datapath in
similar but
different ways:
 Branch

calculates new
PC value as old
PC value +
offset. (relative)

 Jump loads an
immediate
value over top
of the old PC
value.
(absolute)

Address (PC)

Instruction
Memory

+4

Sign ext.

Data
Memory

ALU

Mux

Instruction

Register File

Mux Mux

Mux

ALU

30

Takeaway

Different instructions flow in
different datapaths.

In other words, if we can control the
paths of flow, then we can control
what instruction to execute.

31

Discussion Question

▪ Why do we not have an instruction with two immediate
values?

32

Datapath control

33

Datapath control

▪ These instructions are executed by turning
various parts of the datapath on and off, to
direct the flow of data from the correct
source to the correct destination.

▪ What tells the
processor to turn
on these various
components at
the correct times?

34

Control unit

▪ The control unit takes
in the opcode from the
current instruction, and
sends signals to the rest
of the processor.

▪ Within the control unit is a
finite state machine that can occupy multiple
clock cycles for a single instruction.

 The control unit send out different signals on each
clock cycle, to make the overall operation happen.

Control
Unit

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Opcode

35

Read reg 1

Read reg 2

Write reg

Write data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
A

B

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0] 0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1

P
C

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Opcode

Control
Unit

Shift left 2
Sign

extend

▪ The control unit sends signals (green lines) to various
processor components to enact all possible operations.

36

Signals → instructions

▪ A certain combination of signals will make
data flow from some source to some
destination.
 Just need to figure out what signals produce

what behaviour.

37

Control unit signals

▪ PCWrite: Write the ALU output to the PC.
▪ PCWriteCond: Write the ALU output to the PC,

only if the Zero condition has been met.
▪ IorD: For memory access; short for “Instruction or

Data”. Signals whether the memory address is being
provided by the PC (for instructions) or an ALU
operation (for data).

▪ MemRead: The processor is reading from memory.
▪ MemWrite: The processor is writing to memory.
▪ MemToReg: The register file is receiving data from

memory, not from the ALU output.
▪ IRWrite: The instruction register is being filled

with a new instruction from memory.

38

More control unit signals

▪ PCSource: Signals whether the value of the PC
resulting from an jump, or an ALU operation.

▪ ALUOp (3 wires): Signals the execution of an ALU
operation.

▪ ALUSrcA: Input A into the ALU is coming from the PC
(value=0) or the register file (value=1).

▪ ALUSrcB (2 wires): Input B into the ALU is coming from
the register file (value=0), a constant value of 4
(value=1), the instruction register (value=2), or the
shifted instruction register (value=3).

▪ RegWrite: The processor is writing to the register file.
▪ RegDst: Which part of the instruction is providing the

destination address for a register write (rt versus rd).

39

Example instruction

▪ addi $t7, $t0, 42

 PCWrite = 0

 PCWriteCond = 0

 IorD = X

 MemWrite = 0

 MemRead = 0

 MemToReg = 0

 IRWrite = 0

 PCSource = X

 ALUOp = 001 (add)

 ALUSrcA = 1

 ALUSrcB = 10

 RegWrite = 1

 RegDst = 0

Setting these signals will result in adding register $t0 by 42
and storing result in register $t7

40

▪ addi $t7, $t0, 42

This is a line of
assembly language

41

Controlling the Datapath

42

MIPS Datapath

▪ So, how do we do the following?
 Increment the PC to the next instruction position.
 Store $t1 + 12 into the PC.
 Assuming that register $t3 is storing a valid memory address,

fetch the data from that location in memory and store it in $t5.

Read
reg 1

Read
reg 2

Write
reg

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
A

B

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1

P
C

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Opcode

Control
Unit

Shift left 2
Sign

extend

43

Controlling the signals

▪ Need to understand the
role of each signal, and
what value they need to
have in order to perform
the given operation.

▪ So, what’s the best approach
to make this happen?

Control
Unit

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Opcode

44

Basic approach to datapath

1. Figure out the data source(s) and destination.

2. Determine the path of the data.

3. Deduce the signal values that cause this path:
a) Start with Read & Write signals (at most one

can be high at a time).

b) Then, mux signals along the data path.

c) Non-essential signals get an X value.

45

Example #1: Incrementing PC

▪ Given the datapath above, what signals would
the control unit turn on and off to increment
the program counter by 4?

Read
reg 1

Read
reg 2

Write
reg

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
A

B

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1
P

C

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Opcode

Control
Unit

Shift left 2
Sign

extend

46

Example #1: Incrementing PC

▪ Step #1: Determine data source and destination.
 Program counter provides source,

 Program counter is also destination.

Read
reg 1

Read
reg 2

Write
reg

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
A

B

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1
P

C

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Opcode

Control
Unit

Shift left 2
Sign

extend

47

Example #1: Incrementing PC

▪ Step #2: Determine path for data
 Operand A for ALU: Program counter
 Operand B for ALU: Literal value 4
 Destination path: Through mux, back to PC

Read
reg 1

Read
reg 2

Write
reg

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
A

B

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1
P

C

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Opcode

Control
Unit

Shift left 2
Sign

extend

48

Example #1: Incrementing PC

▪ Setting signals for this datapath:
1. Read & Write signals:

 PCWrite is high, all others are low.

Read
reg 1

Read
reg 2

Write
reg

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
A

B

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1
P

C

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Opcode

Control
Unit

Shift left 2
Sign

extend

49

Example #1: Incrementing PC

▪ Setting signals for this datapath:
2. Mux signals:

 PCSource is 0, AlUSrcA is 0, ALUSrcB is 1

 all others are “don’t cares”.

Read
reg 1

Read
reg 2

Write
reg

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
A

B

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1
P

C

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Opcode

Control
Unit

Shift left 2
Sign

extend

50

Example #1: Incrementing PC

▪ Other signals for this datapath:
 ALUOp is 001 (Cin =0 , S1 = 0, S0 = 1: A+B)

 PCWriteCond is Xwhen PCWrite is 1
 Otherwise it is 1 except when branching.

Read
reg 1

Read
reg 2

Write
reg

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
A

B

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1
P

C

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Opcode

Control
Unit

Shift left 2
Sign

extend

51

Example #1 (final signals)

▪ PCWrite = 1

▪ PCWriteCond = X

▪ IorD = X

▪ MemRead = 0

▪ MemWrite = 0

▪ MemToReg = X

▪ IRWrite = 0

▪ PCSource = 0

▪ ALUOp = 001

▪ ALUSrcA = 0

▪ ALUSrcB = 01

▪ RegWrite = 0

▪ RegDst = X

52

Another example

▪ Given the datapath above, what signals would
the control unit turn on and off in order to add
$r1 to $r2 and store the result in $r7?

Read
reg 1

Read
reg 2

Write
reg

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
A

B

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1
P

C

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Opcode

Control
Unit

Shift left 2
Sign

extend

add $r7, $r1, $r2

53

▪ Step #1: Data source and destination
 Data starts in register block.

 Data goes to register block.

Read
reg 1

Read
reg 2

Write
reg

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
A

B

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1
P

C

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Opcode

Control
Unit

Shift left 2
Sign

extend

add $r7, $r1, $r2

54

Question #1 (cont’d)

▪ Step #2: Determine the path of the data

 Data needs to go through the ALU before heading
back into the register file.

Read
reg 1

Read
reg 2

Write
reg

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
A

B

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1
P

C

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Opcode

Control
Unit

Shift left 2
Sign

extend

add $r7, $r1, $r2

55

Question #1 (cont’d)

▪ Step #3a: Read& Write signals
 Only RegWrite needs to be high.

 PCWrite, PCWriteCond, MemRead, MemWrite,
IRWritewould be low.

Read
reg 1

Read
reg 2

Write
reg

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
A

B

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1

P
C

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Opcode

Control
Unit

Shift left 2
Sign

extend

add $r7, $r1, $r2

56

Question #1 (cont’d)

▪ Step #3b: Relevant mux signals
 Muxes before ALU: ALUSrcA→ 1, ALUSrcB→ 00.
 ALUOp→ 001 (Add)
 Mux before registers: MemToReg→ 0

Read
reg 1

Read
reg 2

Write
reg

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
A

B

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1

P
C

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Opcode

Control
Unit

Shift left 2
Sign

extend

add $r7, $r1, $r2

57

Question #1 (cont’d)

▪ Step #3c: Irrelevant mux signals

 No writing to PC: PCSource→ X.

 No reading from memory: IorD→ X.

Read
reg 1

Read
reg 2

Write
reg

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
A

B

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1

P
C

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Opcode

Control
Unit

Shift left 2
Sign

extend

add $r7, $r1, $r2

58

▪ ALUSrcA = 1

▪ ALUSrcB = 00

▪ RegWrite = 1

▪ RegDst = 1

Note: RegDst rule
high for 3-register operations
low for 2-register operations
X if not using register file

Question #1 (cont’d)

▪ PCWrite = 0

▪ PCWriteCond = 0

▪ IorD = X

▪ MemRead = 0

▪ MemWrite = 0

▪ MemToReg = 0

▪ IRWrite = 0

▪ PCSource = X

▪ ALUOp = 001

59

The Tale of “Hello world”
1. You, the programmer, write a piece of code called

hello.c/java/whatever
2. You compile the code, which translate the code into

machine instructions and save the in an executable file
(e.g., hello, hello.exe)

3. You run the executable, OS load the executable (the
instructions) into memory, set PC.

4. CPU loads the instruction pointed by PC into instruction
register.

5. Control Unit checks the opcode (first 6 bits), decode the
rest of the instruction and send signals to setup the
datapath (billions of MOSFETs switching ON/OFF).

6. Data flow through the datapath, electrons move around…
7. And BOOM!, “hello world” shows up on your screen

60

The Tale of “Hello world”

61

CSCB58:
Computer Organization

Prof. Gennady Pekhimenko

University of Toronto

Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

