CSCB58:
Computer Organization

Prof. Gennady Pekhimenko

2 || " University of Toronto
I &= Fall 2020

00 M

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

CSCB58 Week 9

The Blueprint of
a microprocessor

4|—C CWriteConr
PCWrite LP

The Controller Thing

\A IorD
MemReadI
MemWriteI :
MemtoReq| egiirite
IRWrite RegDst

Opcode|

.’
J,|Shift left 2]

v
\ Nrolf

LLASYE ULLiUll

312 | .%ﬁﬂ.lﬁlﬁl’ 1
o Instruction ead reg »lo
—> Address [25-21] 12 ead A NE
. Memory '”St{ggi%'] Read reg ﬁata ”
data

Instruction »

y

PC

v

v

A4

LU
ut

/
o o [15-0] Write eadl | B »lo
reg ata g b
Instructi Wri 15
Memor on v rite >
Register ata 3
| |
Memor
data Y

ang ﬂsmft eft -

register

The Storage Thing The Arithmetic Thing

The “Controller Thing”

aka: the Control Unit

The Control Unit controls how data flows
in the datapath.

Different executions have different flows.

Processor Datapath

* The datapath of a processor is a description/
illustration of how the data flows between

processor components during the execution of an
operation.

Datapath example

Note: this is just

r _n abstraction ©

v
= Thesimplified | Address (PO |
datapath for v

Most processor

operations has

Instruction |_.->| Instruction I
Memory

stages as v AXAAARAA

e

shown in the
diagram:

I Sign ext. I ‘ Register File ‘

Instruction v ¥

o

fetCh Mux

Instruction
decode &
register fetch

Mux

ALU

Address/data

calculation ‘
Memory

Data ‘

Memory

access
Write back. Mux

Mux

What happens when you run an
executable on your computer?

".Ja.out”, “Is”, “fornite.exe”, ...

. The OS loads a bunch of instructions into
the memory at certain location.

. CPU finds that location and executes the
instructions stored there one by one.

What does an instruction look like?

‘ 00000000 00000001 00111000 00100011 ‘

It's a 32-bit (4-byte) binary string.

How do we remember the location of
the current instruction?

» The program counter (PC) is a special register
that stores the location of the current
instruction.

Each instruction is 4 bytes long, thus we do +4 to
increments the current PC location.

PC values can also be loaded from the result of an
ALU operation (e.g. jumps to a memory address).

So, hereis the instruction. Do it!

‘ 00000000 00000001 00111000 00100011 ‘

nat does the instruction mean?
nat operations do | do?
nere do | get the inputs and put the output?

===

We need to decode the instruction.

Instruction decoding

» The instructions themselves can be broken
down into sections that contain all the

information needed to execute the operation.

Also known as a control word.

= Example: unsigned subtraction

‘ 00000000 00000001 00111000 00100011 ‘

‘ 000000ss sssttttt ddddd666—-L6100011 ‘

‘ Register 7 = Register 0 - Register 1 ‘

12

Instruction registers

* The instruction register takes in the 32-bit
instruction fetched from memory, and reads
the first 6 bits (known as the opcode) to
determine what operation to perform.

‘ 00000000 00000001 00111000 00100011 ‘

\b_l

Instruction register

|
Y Y

‘ 000000 ‘ ‘ 00 00000001 00111000 00100011 ‘

‘ 00000 ‘ ‘ 00001 ‘ ‘ 00111 ‘ ‘ 100011 ‘

Opcodes

* The first six digits
of the instruction
(the opcode) will
determine the
Instruction type.

Except for "R-type’
Instructions
(marked in yellow)

For these, opcode
iIS000000, and last
six digits denote
the function.

/

o

(Instruction Op/Func Instruction Op/Fuh
add 100000 srav 000111
addu 100001 srl 000010
addi 001000 srlv 000110
addiu 001001 beq 000100
div 011010 bgtz 000111
divu 011011 blez 000110
mult 011000 bne 000101
multu 011001
sub 100010
subu 100011 Hdalr 001001
and 100100 Jjr 001000
andi 001100 1b 100000
nor 100111 1lbu 100100
or 100101 1h 100001
ori 001101 lhu 100101
XOr 100110 1w 100011
XOoril 001110 sb 101000
sll 000000 sh 101001
sllv 000100 sSwW 101011

000011 mflo

0100%3/

14

MIPS instruction types

= R-type:
‘ opcode ‘ rs ‘ rt ‘ rd ‘ shamt‘ funct ‘
< : > i > i > i > i X : >
= |-type:
[opese | = | == | weaioe]
< : >< i >< i >< " >
= J-type:
‘ opcode ‘ address ‘
< : >< c >

Read the first 6 bits first, then you know how to break it down.

15

R-type instructions

‘opcode‘ rs ‘ rt ‘ rd ‘shamt‘ funct ‘

6 5 5 5 5 6

= Short for “register-type” instructions.
Because they operate on the registers, naturally.
= These instructions have fields for specifying up to
three registers and a shift amount.

Three registers: two source registers (rs & rt) and one
destination register (rd).

A field is usually coded with all 0 bits when not being used.

» The opcode for all R-type instructions is 000000.

= The function field specifies the type of operation
being performed (add, sub, and, etc).

16

EXampleS ‘opcode‘ rs ‘ rt ‘ rd ‘shamt‘ funct ‘

6 5 5 5 5 6

‘ 00000000 11010001§00101pP00 0100110 ‘

R-type! Reg6! Regiy! Regs! XOR!

|Reg_5 = Reg_6 XOR Reg_17

‘ 00000000 1101000100101pP11 O0QOOOOOO

R-type! Rega7! Reg5: 15 bits! ghift left (SLL)!

Left shift what’s in Reg 17 by 12 bits
and store result in Reg 5

R-type instruction datapath

For the most
part, the funct
field tells the
ALU what
operation to
perform.

rsandrt are
sent to the
register file, to
specify the ALU
operands.

rdis also sent
to the register
file, to specify
the location of
the result.

v
I Address (PC) I
: o]
Instruction .
Memory I—o—>| Instruction I +4
i\ WVVVVWVW$
ISign ext.I ‘ Register File ‘
|
3 ¢ ¥
Mux Mux
ALU
v \ 4
Data
\Y
j‘ Memory ‘ e
Mux

18

I-type instructions

‘opcode‘ rs ‘ rt ‘ immediate

\/_

pd > & > & > &
7 N 7 N 7 N

) 6 5 5 16

= These instructions have a 16-bit immediate field.
= This field a constant value, which is used for:

an immediate operand,
a branch target offset (e.q., in branch if equal op), or
an offset for a memory operand (e.qg., in load op).

I-type instructions

‘opcode‘ rs ‘ rt ‘ immediate

pd > & > & > &
7 N 7 N 7 N

) 6 5 5 16

A4

= For branch target offset operations, the immediate field
contains the signed difference between the current address
stored in the PC and the address of the target instruction.

This offset is stored with the two low order bits dropped. The
dropped bits are always 0 since instructions are word-aligned.

Word-aligned R VN R e EC

Every instruction is 4-byte (2 word) long,

so the starting address of each instruction is always a multiple of 4,
like

0 (0000)

4 (0100)

8 (1000)

12 (1100)

444 (110111100)

Note that the two lowest bits are always 00.
Since we know they are always 00, we don’t need to use two bits to remember them.

21

Examp|es ‘opcode‘ rs ‘ rt ‘ immediate

& > & > & > &
7 N 7 N 7 N

) 6 5 5 16

\/_

‘ 00010000 11010001 00000000 00100110 ‘

Branchonequal Reg6! Regay7! Offset = 10011000 = 152
(:]0))

If Reg 6 == Reg 17:
PC += 152

Else:
PC += 4

22

Examp|es ‘opcode‘ rs ‘ rt ‘ immediate

\/_

& > & > & > &
7 N 7 N 7 N

) 6 5 5 16

‘ 10000000 11¢010001 00000000 00100110 ‘

Load byte! Regé6! Regai7! Offset = 100110 = 38
()

Load one byte from MEM[Reg 6+38] to Reg 17

I-type instruction datapath

!
I Address (PC) I
= Example #1: 7
Immediate In&gﬁg:‘;n I—'—>| Instruction I | +4 I
arithmetic Iy TAEEAEEE AR
operations, |5i9"ext-|‘ Register File ‘
" |
with result) T 4V
stored in Mux/ \Mux
registers.
ALU
¥ A4
Data
j‘ Memory ‘ Mux

NMUX?

Interlude: Sign extension

Sign ext.

The immediately value we get from an I-type instruction is 16-

bit long.

But all operands of ALU are supposed to be 32-bit long.
So fill the upper 16 bits of the number with the sign-bit

E.g., 1100 1000 1000 1000 becomes

11711 1717171 17317171 1313171 1100 1000 1000 1000

I-type instruction datapath

)
I Address (PC) I
= Example #2: 7
Immediate In&gﬁg:‘;n I—'—>| Instruction I | +4 I
arithmetic I TAEEAEEE AR
operations, [Signext.] [RegisterFile |
: |
with result — 3 Y
stored in Mux /| Mux
memory.
ALU
‘i' \ 4
Data
j‘ Memory ‘ Mux

NMUX?

I-type instruction datapath

v
I Address (PC) I
» Example #3: .
Branch In&g;c;c:;n I—o—>| Instruction I Ijtl
Instructions. 7 IR RA R VAR
Output IS ISign ext.I ‘ Register File ‘
written to — ¥ l h
PC, which Mux Mux
looks to that
location for ALU
the next D:ta \
instruction. j‘ Memory ‘ Mux
; Mux i

J-type instructions

‘ opcode ‘ address

\ 4

pd P4
~ 7 N

6 26

= Only two J-type instructions:
jump (3)
jump and link (7a1)
= These instructions use the 26-bit coded address field to
specify the target of the jump.

The first four bits of the destination address are the same as the
current bits in the program counter.

The bits in positions 27 to 2 in the address are the 26 bits
provided in the instruction.

The bits at positions 1 and 0 are always 0 since instructions are
word-aligned.

28

Examp|es ‘ opcode ‘ address ‘

Pyl > 2
~ 7 N

6 26

v

‘ 00001000 11010001 00000000 00100110 ‘

Jump (J) destination address= {PC[31:28], whats-above, 00}

PC jumps to address
{PC[31:28] (4 bits), what’s above (26 bits), 00 (2 bits)}
(32 bits total)

29

J-type instruction datapath

Vv
Address (PC
Jump and | ress 1
branch use the e EI:I
) Instruction .

datapath in Memory I‘ >{ Instruction | ik
similar but y VVIVIvIVyy
different ways: | sign ext. | ‘ Register File ‘

Branch | \L

calculates new v ¥ v

PC value as old Mux Mux

PC value +

offset. (relative)

Jump loads an =
immediate j‘ < ‘ Y

Data
value over top e L

of the old PC
Value. ﬁ/
(absolute) Mux

Takeaway

Different instructions flow in
different datapaths.

In other words, if we can control the
paths of flow, then we can control
what instruction to execute.

Discussion Question

= Why do we not have an instruction with two immediate
values?

Datapath control

33

Datapath control

= These instructions are executed by turning
various parts of the datapath on and off, to
direct the flow of data from the correct
source to the correct destination.

= What tells the
processor to turn
on these various
components at
the correct times?

34

Control unit

PCWriteCondg N\

PCSource

= The control unit takes

PCWrite

ALUOp

TIorD

in the opcode from the

ALUSrcB

MemRead ContrOI

ALUSrcA

current instruction, and

MemWrite LJnit

RegWrite

MemtoReqg

YV V V V VvV V

RegDst

AN N N AN N AN A

sends signals to the rest <=
of the processor. \ x J

Opcode

= Within the control unit is a
finite state machine that can occupy multiple
clock cycles for a single instruction.

The control unit send out different signals on each
clock cycle, to make the overall operation happen.

35

* The control unit sends signals (green lines) to various
processor components to enact all possible operations.

\ v eolf

Shift left 2 T
Instruction
B5558) | Registers | T
Instruction L [Read reg 1
o)
g Address [25-21] 14 ead A
—»| Mengjory '”“E;’E,ﬂ%’] > Read reg 2 atai
° LU
ut

ta -o—>»]
. Instruction o
Write N
p| data fa5-0] -T Write reg §ead
1 ata2
Instruction 4
Memory | Register Write data
o
M
Eey -
regster | exiEhd Shift left 2

VVVVl v v
[W

Signals -2 instructions

= A certain combination of signals will make
data flow from some source to some
destination.

Just need to figure out what signals produce
what behaviour.

37

Control unit signals

= PCWrite:Write the ALU output to the PC.

* PCWriteCond: Write the ALU output to the PC,
only if the Zero condition has been met.

= TorD: For memory access; short for “Instruction or
Data”. Signals whether the memory address is being
provided by the PC (for instructions) or an ALU
operation (for data).

= MemRead: The processor is reading from memory.
= MemWrite:The processoris writing to memory.

= MemToRegq: The register file is receiving data from
memory, not from the ALU output.

= TRWrite:Theinstruction registeris being filled
with a new instruction from memory.

38

More control unit signals

PCSource: Signals whether the value of the PC
resulting from an jump, or an ALU operation.

ALUOp (3 wires): Signals the execution of an ALU
operation.

ALUSrcA: Input A into the ALU is coming from the PC
(value=0) or the register file (value=1).

ALUSrcB (2 wires): Input B into the ALU is coming from
the register file (value=0), a constant value of 4
(value=1), the instruction register (value=2), or the
shifted instruction register (value=3).

RegWrite: The processoris writing to the register file.
RegDst: Which part of the instruction is providing the
destination address for a register write (rt versus rd).

39

P
%Y

Example instruction

£
Q

0 |
3
" addi $t7, $t0, 42 b |

© PCWrite = 0

= PCWriteCond = 0 o PCSource = X

= TorD = X = ALUOp = 001 (add)
° MemWrite = 0 = ALUSrcA = 1

o= MemRead = 0 = ALUSrcB = 10

° MemToReg = 0 ° RegWrite =1

= IRWrite = 0 = Regbhst = 0

Setting these signals will result in adding register $t0 by 42
and storing result in register $t7

40

» addi st7, $t0, 42

This is a line of

assembly language

Controlling the Datapath

MIPS Datapath

N ALUOp
IorD
ALUSrcB
MemRead
: ALUSrcA
MemWrite
RegWrite
MemtoReg
K RegDst
IRWrite u

Opcode
_—

LA 4
\ND—'OI

1J Shift left 2 |I T
Instruction [Registers I
[31-26]] g
U ® Instruction »] Read
a Address [25-21] e Read
—p| 1 Instruction e >l Read dataz
Memory » [20-16] v reg 2 g
data 4 : ’ | ALU
. nstruction | @ o . out [?
Write [15-0] Write Read v
data 1 reg data 2
Instruction Write
Memory I Register data
— o I
Memory 1
data Sign
register | » extand Shift left 2

= So, how do we do the following?
Increment the PC to the next instruction position.
Store $t1 + 12 into the PC.

Assuming that register $t3 is storing a valid memory address,
fetch the data from that location in memory and store it in $ts.

Controlling the signals

PCWriteCondg

= Need to understand the

PCWrite

role of each signal, and

IorD

MemRead

what value they need to

MemWrite

MemtoReqg

have in order to perform

AN N N AN N AN A

IRWrite

the given operation.

» So, what's the best approach
to make this happen?

Control
Unit

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

YV V V V VvV V

Opcode

A

Basic approach to datapath

1. Figure out the data source(s) and destination.

2. Determine the path of the data.

3. Deduce the signal values that cause this path:

Start with Read & Write signals (at most one
can be high at a time).

Then, mux signals along the data path.
Non-essential signals get an X value.

45

Example #1: Incrementing PC

PCWriteCon d,
: Control | | pcsource
PCWrite Unit
N\ Ay ALUOp
IorD
AAAAA
eeeeee e
: ALUSrcA
ite
RegWrite
eeeeeee g
RegDs
IIIII Opcode m

= Given the datapath above, what signals would
the control unit turn on and off to increment
the program counter by 47?

46

Example #1: Incrementing PC

PCWriteCond,
———— | Control [§ pcsource
PCWrite Unit
ALUOpP
A N IorD
ALUSrcB
MemRead
- ALUS
MemWrite
RegWrit
MemtoReg
: egDst
IRWrite opcode J]|
” §

PC }
ﬁ
= o

2

<
a3
~<
=3 5 5
= Ve N LT
U'| m
& S = S
Py
p
{ /]

]
m Instruction rite
emory Register r ata
—{o

Memory
data
register i)
I P| exten

= Step #1: Determine data source and destination.

Program counter provides source,
Program counter is also destination.

47

Example #1: Incrementing PC
/.Lchd |

AAAAA

o
1 1
I J’I Shift left 2 || T 2
Instruction [Registers
[31-26]] L
Instruction pJ Rea 0
ddre [25-21])& » 1
Instruction P ea "
efzory [20-16] re
—
uction L ¢ o) /é)IIJltJ B
X\/rlte [15-0] —
m Instruction rite
emory Register r ata
-0

MMMMM
data
register g
I »| exten

= Step #2: Determine path for data
Operand A for ALU: Program counter
Operand B for ALU: Literal value 4
Destination path: Through mux, back to PC

Example

1: Incrementing PC

PCWriteCond,
] Control | | csource
PCWrite Unit
\ \ ALUOpP
IorD
ALUSrcB
MemRead
- ALUSrcA
MemWrite
RegWrite
MemtoReg
- RegDst
IRWrite Opcode m
o
1 1
I J’I Shift left 2 || 2
Instruction ‘Registers I
[31-26]] L
U ® Instruction > Read
a Address [25-21] rega Read
—»| 1 Instruction o >l Read data1
Memory . [20-26] "L reg2
date 4 Instruction) q{ B
Write [15-0] B ° L Write Read Ot
data 1 reg data 2
m Instruction Write
emory I Register data
—> o I
Memory 1
Cata Sign
register | N v Shift left 2

= Setting signals for this datapath:

Read & Write signals:
PCWrite ishigh, all others are low.

49

Example #1: Incrementing PC

ALUOp
IorD
ALUSrcB
MemRead
: ALUSrcA
MemWrite
RegWrite
MemtoReg
K RegDst
IRWrite —

i J’I Shift left 2 || T
Instruction ‘Re isters
[32-26] " | gisters | L
@] o Instruction > Read
o Address [25-21] reg1
: Read
—>| 2 Instruction P > Read data1
Memory a [20-16] reg 2
data 14 " — » ALU 4
. nstruction o .
Write [15-0] B Ly Write Read Out
ik 1 reg data 2
M Instruction Write
emory I Register data
—

[¢] I
Memory 1
ot Sign
register — oond Shift left 2

= Setting signals for this datapath:
Mux signals:

PCSourceis 0, A1USrcAis 0, ALUSrcBIiIs 1
all others are “"don’t cares”.

Example #1: Incrementing PC
/.Lchd |

AAAAA

(o]
1
M shift left 2 | ° 2

i | ift le 2I T
Instruction | Registe
[31-26] _ L
Instruction »] Read 0
dd | [25-21] reg1 Read A »l1
nstruction o Read data1
emory [20-16] reg
d uction L ¢ 0‘ G B
Write [15-0] Writ Read ot
d g data 2 B
Writ:

]
] Instruction rite
emory Register r data
-0

MMMMM
data S
register — b enigng Shift left 2

= QOther signals for this datapath:
ALUOpis 001 (Cin=0,51=0, 50 =1: A+B)
PCWriteCondis Xwhen PCWriteisl
Otherwise it is 1 except when branching.

Example #1 (final signals)

" PCWrite=1

" PCWriteCond=X
= JorD=X

" MemRead=0

" MemWrite=0

" MemToReg=X

= TRWrite=0

PCSource=0
ALUOp =001
ALUSrcA=0
ALUSrcB=01
RegWrite=0
RegDst =X

52

add $r7, $r1, $r2

PPPPPPPP

AAAAA

AAAAA

AAAAAAA

RegWrite

PCWriteCond
——————— | Contyrol
PCWrite nit
X 5
eeeeee e
ite
eeeeeee g
IRWrite pcode
” §
struction
[31-26]
struction
Address [25-21]
struction
Memory [20-16]
data P
struction
Write o
data [25-0]
Memory I Register

1 P ALU
Out

MMMMM

= Given the datapath above, what signals would
the control unit turn on and off in order to add
Srlto Sr2 andstoretheresultin Sr7?

53

add $r7, $r1, $r2

PCWriteCond,
———— | Control [§ pcsource
PCWrite Unit
\ \ ALUOpP
IorD
ALUSrcB
MemRead
- ALUSrcA
MemWrite
RegWrite
MemtoReg
- RegDst
IRWrite Opcode m
y
e
»l o
K
fh— :
Instruction [Registers I
[31-26] _ £ S~
U ® Instruction »] Read l°
a Address [25-21] rega Read »|1
—p| 1 Instruction o >l Read data1 2 '/
Memory > [20-16] 4 reg 2
HE 4 Instruction) gL B
Write [25-0] e © L Write Read kl Ot
data 1 reg data 2 B »|o
-) 4 —Ppl1
M Instruction » Write o5
ﬂl Register EIE] »
S 3
— o | L
Memory 1
Cala Sign
register | N v Shift left 2

= Step #1: Data source and destination
Data starts in register block.
Data goes to register block.

54

add $r7, $r1, $r2

PCWriteCond
———f | Control | § pcsource
PPPPP t
\A S R
AAAAA
eeeeee d
—1% = QBALUSrcA
ite
RegWrite
eeeeeee g
RegD
IIIII Opcode m

MMMMMM

»| ALU
Out

= Step #2: Determine the path of the data
Data needs to go through the ALU before heading

back into the register file.

55

Question #1 (cont'd) add $r7, $r1, $r2

PCWriteCond,
A Cont_rol PCSource
PCWrite Unit
A ALUOp
IorD
ALUSrcB
MemRead
X ALUSrcA
MemWrit
RegWrit
MemtoReg
K RegD
III te Opcode m
e
4
K
J1 Shift left II 2
I ion Regist:
[31-26] | ~
ion » Read —>|o
[25-21. reg i
5-21] 9 Read A >
| ion ° Read data1 _—
Y [20-16] reg
I ion L 0‘ ALU |
[15-0]] Writ Read l Out
reg data 2 B 3 o
Instruction Write 4 4 ;
Register data » 3
Memory
et Sign .
register | »| extand Shift left 2

= Step #3a: Read & Write signals
Only RegWrite needs to be high.

PCWrite, PCWriteCond, MemRead, MemWrite,
TRWrite would be low.

Question #1 (cont'd) add $r7, $r1, $r2

PCWriteCond
———— [| Control | ¥ scsource
PCWrite Unit
ALUOp
A IorD
ALUSrcB
MemRead
- ALUSrcA
MemWrite
RegWrit
MemtoReg
- RegD
III te Opcode]
e
»| o
K
2
| tion Regist
[31-26] —J
tion Read
[25-21] regi
| ion P Read
y [20-16] reg
> ~
| ion L g (o] ngiJ]
[25-0] | it U
reg
Instruction pAite
Register r data
=] o |
Memory
data Sign
register i »| extend

= Step #3b: Relevant mux signals
Muxes before ALU: ALUSrcA =2 1, ALUSrcB =2 00.
ALUOp =2 001 (Add)
Mux before registers: MemToReg =2 0

57

Question #1 (cont'd) add $r7, $r1, $r2

PCWriteCond,
———— | Control [§ pcsource
PCWrite Unit
N ALUOp
IorD
ALUSrcB
MemRead
- ALUSrchA
MemWrite
RegWrite
MemtoReg
- RegDst
IRWrite Opcode m
—
4
.’ 1
‘Iyl Shift left 2 II T 2
Instruction ‘Registers I
[31-26]] S —
U ® Instruction »] Read o
a Address [25-21] ICOLL Read >l
—p| 1 Instruction P >l Read data1 R 4
Memory » [20-16] v reg 2 — D
S " Instruction] | Bt B
Write [15-0] B © LY Write Read R l Out
data 1 reg data 2 B »| o
- X 4—Ppla
Instruction Write » >
Memory I Register data ¢ 3
Memory 1
data Sign
register | » extend Shift left 2

= Step #3c: Irrelevant mux signals
No writing to PC: PCSource =2 X.
No reading from memory: TorD = X.

Question #1 (cont’d)

" PCWrite=0

" PCWriteCond=0
= JorD=X

= MemRead =0

" MemWrite=0

= MemToReg=0

" TRWrite=0

= PCSource=X

= ALUOp=001

ALUSrcA=1
ALUSrcB=00
" RegWrite=1
= RegDst=1

-

_

Note: RegDst rule
high for 3-register operations

low for 2-register operations
X if not using register file

~

J

59

The Tale of “Hello world”

1.

You, the programmer, write a piece of code called
hello.c/java/whatever

. You compile the code, which translate the code into

machine instructions and save the in an executable file
(e.g., hello, hello.exe)

. You run the executable, OS load the executable (the

instructions) into memory, set PC.

. CPU loads the instruction pointed by PC into instruction

register.

. Control Unit checks the opcode (first 6 bits), decode the

rest of the instruction and send signals to setup the
datapath (billions of MOSFETSs switching ON/OFF).

. Data flow through the datapath, electrons move around...
. And BOOM!, “hello world” shows up on your screen

60

The Tale of “Hello world”

TRUE STORY

CSCB58:
Computer Organization

Prof. Gennady Pekhimenko

2 || " University of Toronto
I &= Fall 2020

00 M

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

