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Circuit Timing



Timing

▪ So far we have been worrying whether a circuit is correct.

▪ Now let’s think about how to make a circuit fast.

▪ Key concept: latency

 propagation delay

 contamination delay
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Delay Example

▪ We measure the interval 

between the two “50% points” 

of the changing signals
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Propagation & Contamination Delay

▪ Propagation delay: the 
maximum time from when an 
input changes until the output or 
outputs reach their final value.

▪ Contamination delay: the 
minimum time from when an 
input changes until any output 
starts to change its value.
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Given a circuit diagram,

calculate its propagation delay 

and contamination delay

7



Need to know

▪ The propagation and contamination 
delay of each logic gate used
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Gate t_pd
(propagation)

t_cd
(contamination)

2-input AND 100 picoseconds 60 picoseconds

2-input OR 120 picoseconds 40 picoseconds



Calculate Propagation Delay

▪ Find the critical path (path with the largest number of gates)

▪ then sum up the propagation delay of all the gates on the 
critical path

▪ 100 + 120 + 100 = 320 picoseconds
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Gate t_pd t_cd

2-input AND 100 ps 60 ps

2-input OR 120 ps 40 ps



Calculate Contamination Delay

▪ Find the short path (path with the smallest number of gates)

▪ then sum up the contamination delay of all the gates on the 
short path

▪ 60 picoseconds
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Gate t_pd t_cd

2-input AND 100 ps 60 ps

2-input OR 120 ps 40 ps



Knowing how to calculate delays allows us 
to design circuits that are fast.

11



WE = 1

WE

A Y

A Y

WE = 0

A Y

WE A Y

0 X Z

1 0 0

1 1 1

12

Quick intro: 
Tri-state buffer



Example: design fast circuit
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two different 
4-1 muxes



Example: design fast circuit
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• We care about the 
propagation delays of 
the two circuits.
• it tells us “how soon I 

can get the answer”
• More specifically, we care 

about the D-to-Y delay 
and S-to-Y delay because 
D and S may arrive at 
different time.



▪ D-to-Y propagation delay:

▪ 2 x TRISTATE_AY = 100

▪ S-to-Y propagation delay

▪ TRISTATE_ENY + TRISTATE_AY

▪ = 35 + 50 = 85
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▪ D-to-Y propagation delay:

▪ TRISTATE_AY = 50

▪ S-to-Y propagation delay

▪ NOT + AND2 + TRISTATE_ENY 

▪ = 30 + 60 + 35 = 125
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Analysis result

▪ Circuit 1 propagation:

 D-to-Y: 100 ps

 S-to-Y: 85 ps

▪ Circuit 2 propagation

 D-to-Y: 50 ps

 S-to-Y: 125 ps

▪ Which circuit is faster?

 What if D and S arrive at the same time?

 What if D arrives earlier than S?

 What if S arrives earlier than D?
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Delays: the lower/higher, the better?

▪ Propagation delay, typically, should 
be upper-bounded.
 shorter propagation means getting 

answer faster

 How to make it lower?

 shorten the critical path

▪ Contamination delay, typically, 
should be lower-bounded
 want to reliably sample the value 

before change.

 How to make it longer?

 add buffers to the short path
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New Topic:

Processor 

Components
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Using what we have learned so far 
(combinational logic, devices, sequential 
circuits, FSMs), how do we build a processor?
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Deconstructing processors

▪ Simpler at a high level:

Storage 
Unit

Arithmetic  
Unit

Controller  
Unit “Datapath”



Datapath vs. Control

▪ Datapath: where all data computations take place.

 Often a diagram version of real wired connections.

▪ Control unit: orchestrates the actions that take place in the 
datapath. 

 The control unit is a big finite-state machine that instructs the 
datapath to perform all appropriate actions.



Datapath example



Example: Calculate x2 + 2x

▪ Assume that you have access to a value from an external 
source. How would you calculate x2 + 2x with components 
you’ve seen so far?

▪ Components needed:

 ALU (to add, subtract and multiply values)

 Multiplexers (to determine what the inputs should be to the ALU)

 Registers (to hold values used in the calculation)



Example schematic

ALU 

0 1 0 1

X

SelxA SelAB

ALUop

LdRA LdRBRBRA



Making the calculation

▪ Steps for x2 + 2x:
 Load X into RA & RB

 Multiply RA & RB
 Store result in RA

 Add X to RA
 Store result in RA

 Add X to RA again
 ALU output is x2 + 2x.

▪ How do we make this happen?



Making the calculation

High-level Steps Control Signals

▪ Load X into RA & RB

▪ Multiply RA & RB
 Store result in RA

▪ Add X to RA
 Store result in RA

▪ Add X to RA again
 ALU output is x2 + 2x.

▪ Who sends these signals?

▪ SelxA = 0, ALUop = A, 
LdRA = 1, LdRB = 1

▪ SelxA = 1, SelAB = 1, 
ALUop = Multiply, LdRA = 1

▪ SelxA = 0, SelAB = 0, 
ALUop = Add, LdRA = 1

▪ SelxA = 0, SelAB = 0, 
ALUop = Add



Control Unit

▪ Basically, a giant Finite State Machine

 Synchronized to system-wide signals (clock, resetn)

▪ Outputs the datapath control signals

 SelxA, SelAB =>  control mux outputs (ALU inputs)

 ALUop =>  controls ALU operation

 LdRA, LdRB =>  controls loading for registers RA, RB

▪ Some architectures also output a done signal, 
when the computation is complete

 Yet another output; not shown in our datapaths



Datapath + Control

Datapath
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are optional, 
for whenever 
the operation 
starts or stops



Microprocessors

▪ So far, we’ve been talking
about making devices,
such as adders, counters
and registers.

▪ The ultimate goal is to
make a microprocessor, which is a digital 
device that processes input, can store values 
and produces output, according to a set of 
on-board instructions.
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Deconstructing processors

▪ Processors aren’t so bad when you consider 
them piece by piece:

Storage 
Thing

Arithmetic 
Thing

Controller 
Thing
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Microprocessors

▪ These devices are a
combination of the
units that we’ve
discussed so far:
 Registers to store values.

 Adders and shifters to process data.

 Finite state machines to control the process.

▪ Microprocessors are the basis of all 
computing since the 1970’s, and can be found 
in nearly every sort of electronics.
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aka: the Arithmetic Logic Unit (ALU)

The “Arithmetic Thing”
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We are here

Assembly Language

Processors

Finite State 
Machines

Arithmetic 
Logic Units

Devices Flip-flops

Circuits

Gates

Transistors
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Arithmetic Logic Unit

▪ The first microprocessor
applications were calculators.

 Recall the unit on adders and 
subtractors.

 These are part of a larger 
structure called the arithmetic 
logic unit (ALU).

▪ This larger structure is responsible for the 
processing of all data values in a basic CPU.
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ALU inputs

▪ The ALU performs all of
the arithmetic operations
covered in this course so
far, and logical operations
as well (AND, OR, NOT, etc.)
 A and B are the operands

 The select bits (S) indicate which operation is 
being performed (S2 is a mode select bit, 
indicating whether the ALU is in arithmetic or 
logic mode).

 The carry bit Cin is used in operations such as 
incrementing an input value or the overall result.

A B

G

Cin,S VCNZ
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ALU outputs

▪ In addition to the input
signals, there are output
signals V, C, N & Z which
indicate special conditions
in the arithmetic result:
 V: overflow condition

 The result of the operation could not be stored in 
the n bits of G, meaning that the result is incorrect.

 C: carry-out bit

 N: Negative indicator

 Z: Zero-condition indicator

A B

G

Cin,S VCNZ
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The “A” of ALU

▪ To understand how the ALU does all of these operations, 
let’s start with the arithmetic side.

▪ Fundamentally, this side is made of an adder / subtractor
unit, which we’ve seen already:
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Y3
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ALU block diagram

▪ In addition to data inputs and outputs, this circuit also has: 

 outputs indicating the different conditions,

 inputs specifying the operation to perform (similar to Sub).

n-bit 
ALU

A0
A1
…
An

B0
B1
…
Bn

...

...

G0
G1
…
Gn

...

Data input A

Data input B

Data output G

Cin

S0

S2

S1

Carry input

Operation &
Mode select

Cout Carry output

Overflow indicator

Negative indicator
Zero indicator

V

N

Z

42



Arithmetic components

▪ In addition to addition and subtraction, many more 
operations can be performed by manipulating what 
is added to input B, as shown in the diagram above.

B input
logic

n-bit 
parallel
adder

A

B

Cin

S0

S1

G

G = X + Y + Cin

Cout

X

Y

n

n
n

n
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Arithmetic operations 

▪ If the input logic circuit on the left sends B straight through 
to the adder, result is G = A+B

▪ What if Bwas replaced by all ones instead?
 Result of addition operation:  G = A-1

▪ What if Bwas replaced by B?
 Result of addition operation:  G = A-B-1

▪ And what if Bwas replaced by all zeroes?
 Result is:  G = A. (Not interesting, but useful!)

→ Instead of a Sub signal, the operation you want is signaled 
using the select bits S0 & S1.
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Operation selection

▪ This is a good start! But something is missing…

▪ What about the carry bit?

Select 
bits Y

input
Result Operation

S1 S0

0 0 All 0s G = A Transfer

0 1 B G = A+B Addition

1 0 B G = A+B Subtraction - 1

1 1 All 1s G = A-1 Decrement
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Full operation selection

▪ Based on the values on the select bits and the 
carry bit, we can perform any number of basic 
arithmetic operations by manipulating what 
value is added to A.

Select Input Operation

S1 S0 Y Cin=0 Cin=1

0 0 All 0s G = A  (transfer) G = A+1  (increment)

0 1 B G = A+B  (add) G = A+B+1

1 0 B G = A+B G = A+B+1  (subtract)

1 1 All 1s G = A-1  (decrement) G = A  (transfer)
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The “L” of ALU

▪ We also want a circuit
that can perform
logical operations,
in addition to
arithmetic ones.

▪ How do we tell
which operation
to perform?
 Another select bit! 

▪ If S2 = 1, then logic circuit block is activated.
▪ Multiplexer is used to determine which block 

(logical or arithmetic) goes to the output.
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1

0

3

2
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Single ALU Stage
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Multiplication
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What about multiplication?

▪ Multiplication (and division) operations are always more 
complicated than other arithmetic (addition, subtraction) or 
logical (AND, OR) operations.

▪ Three major ways that multiplication can be implemented in 
circuitry:

 Layered rows of adder units.

 An adder/shifter circuit

 Booth’s Algorithm
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Multiplication

▪ Multiplier circuits can
be constructed as
an array of adder
circuits. 

▪ This can get a little
expensive as the size of the operands grows.

▪ Is there an alternative to this circuit? 
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Multiplication

▪ Revisiting grade 3 math…

123

x 456

12 3

x  456

1368

1 2 3

x  456

1368

912

1 23

x  456

1368

912

456

123

x  456

1368

912

456

56088
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Multiplication

▪ And now, in binary…

101

x 110

10 1

x  110

110

1 0 1

x  110

110

000

1 01

x  110

110

000

110

101

x  110

110

000

110

11110
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Observations

▪ Calculation flow

 Multiply by 1 bit of multiplier

 Add to sum and shift sum

 Shift multiplier by 1 bit

 Repeat the above

▪ What is “multiply by 1 bit of binary”?

 10101 x 1 ?

 10101 x 0 ?

 It’s an AND!
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101

x  110

110

000

110

11110



Accumulator circuits
▪ What if you could perform each stage of the 

multiplication operation, one after the other?

 This circuit would only
need a single row of
adders and a couple
of shift registers.

Adder

Register R

Shift Left 1

Shift Left 1

Register Y

Register X

1xn AND
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Make it more efficient

Think about 258 x 9999

▪ Multiply by 9, add to sum, shift, multiply by 9, add to sum, shift, 
multiple by 9, add to sum, shift, multiply by 9, add to sum. 

▪ 258 x 9999 = 258 x (10000 - 1) = 258 x 10000 – 258

▪ Just shift 258, becomes 2580000, then do 2580000 – 258

▪ More efficient!
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Efficient Multiplication: Booth’s Algorithm

▪ Take advantage of circuits where shifting is cheaper than 
adding, or where space is at a premium.
 when multiplying by certain values (e.g. 99), it can be easier to think 

of this operation as a difference between two products. 

▪ Consider the shortcut method when multiplying a given 
decimal value X by 9999:

 X*9999 = X*10000 – X*1

▪ Now consider the equivalent problem in binary:
 X*001111 = X*010000 – X*1

▪ More details: https://en.wikipedia.org/wiki/Booth%27s_multiplication_algorithm
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Reflections on multiplication

▪ Multiplication isn’t as common an operation as addition or 
subtraction, but occurs enough that its implementation is 
handled in the hardware.

▪ Most common multiplication and division operations are 
powers of 2. For this, we do shifting instead of using the 
multiplier circuit.

 e.g., in your code, do x << 3, instead of x * 8

58



A Barrel Shifter unit

▪ This barrel shifter shifts and rotates D to the left by S bits.
 If S1S0 is 01 =>   Y = D2D1D0D3

 If S1S0 is 11 =>   Y = D0D3D2D1

▪ This is a purely combinational circuit, unlike the shift registers in 
the lab.

D3

S0

3 S1 S0

D2 D1 D0

Y0Y1Y2Y3

S1

012 3 S1 S0012 3 S1 S0012 3 S1 S0012

4-to-1  MUX4-to-1  MUX4-to-1  MUX4-to-1  MUX



Expanding our view

▪ So where do A and 
B come from?

AG select B

V,C,N,Z ALU
Shifter

B
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MuxB select01
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G H
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Storage 
Thing

Arithmetic 
Thing

Controller 
Thing
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Booth’s Algorithm

▪ This idea is triggered on cases where two neighboring digits in 
an operand are different.
 If digits at i and i-1 are 0 and 1, the multiplicand is added to the 

result at position i. 

 If digits at i and i-1 are 1 and 0, the multiplicand is subtracted from 
the result at position i. 

▪ The result is always a value whose size is the sum of the sizes 
of the two multiplicands.



Booth’s Algorithm

▪ Example:

01010010

x  00011110

01010010

+ 111110101110

0100110011100

B

A

Subtract B 
from here

Add B here

Sign extend this 
before adding



Booth’s Algorithm

▪ We need to make this work in hardware. 

 Option #1: Have hardware set up to compare neighbouring bits at 
every position in A, with adders in place for when the bits don’t 
match.

 Problem: This is a lot of hardware, which Booth’s Algorithm is trying to 
avoid.

 Option #2: Have hardware set up to compare tw0 neighbouring bits, 
and have them move down through A, looking for mismatched pairs.

 Problem: Hardware doesn’t move like that. Oops.



Booth’s Algorithm

▪ Still need to make this work in hardware… 

 Option #3: Have hardware set up to compare tw0 neighbouring bits 
in the lowest position of A, and looking for mismatched pairs in A by 
shifting A to the right one bit at a time.

 Solution! This could work, but the accumulated solution Pwould have to 
shift one bit at a time as well, so that when B is added or subtracted, it’s 
from the correct position.



Booth’s Algorithm

▪ Steps in Booth’s Algorithm:
1. Designate the two multiplicands as A & B, and the 

result as some product P.

2. Add an extra zero bit to the right-most side of A.

3. Repeat the following for each original bit in A:
a) If the last two bits of A are the same, do nothing.

b) If the last two bits of A are 01, then add B to the highest 
bits of P.

c) If the last two bits of A are 10, then subtract B from the 
highest bits of P.

d) Perform one-digit arithmetic right-shift on both P and A.

4. The result in P is the product of A and B.



Booth’s Algorithm Example

▪ Example: (-5) * 2

▪ Steps #1 & #2:

 A = -5 → 11011

 Add extra zero to the right       → A = 11011 0

 B = 2 → 00010

 -B = -2 → 11110

 P = 0 → 00000 00000



Booth’s Algorithm Example

▪ Step #3 (repeat 5 times):

 Check last two digits of A:

1101 10

 Since digits are 10, subtract B from the most significant digits of P:

P 00000 00000

-B +11110

P’ 11110 00000

 Arithmetic shift P and A one bit to the right:

 A = 111011 P = 11111 00000



Booth’s Algorithm Example

▪ Step #3 (repeat 4 more times):

 Check last two digits of A:

1110 11

 Since digits are 11, do nothing to P.

 Arithmetic shift P and A one bit to the right:

 A = 111101 P = 11111 10000



Booth’s Algorithm Example

▪ Step #3 (repeat 3 more times):

 Check last two digits of A:

1111 01

 Since digits are 01, add B to the most significant digits of P:

P 11111 10000

+B +00010

P’ 00001 10000

 Arithmetic shift P and A one bit to the right:

 A = 111110 P = 00000 11000



Booth’s Algorithm Example

▪ Step #3 (repeat 2 more times):

 Check last two digits of A:

1111 10

 Since digits are 10, subtract B from the most significant digits of P:

P 00000 11000

-B +11110

P’ 11110 11000

 Arithmetic shift P and A one bit to the right:

 A = 111111 P = 11111 01100



▪ Step #3 (final time):

 Check last two digits of A:

1111 11

 Since digits are 11, do nothing to P:

 Arithmetic shift P and A one bit to the right:

 A = 111111 P = 11111 10110

▪ Final product: P = 111110110

= -10

Booth’s Algorithm Example


