CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto
Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

CSCB58 Week 7

Circuit Timing

Timing

- So far we have been worrying whether a circuit is correct.
- Now let's think about how to make a circuit fast.
- Key concept: latency
- propagation delay
- contamination delay

Delay Example

- We measure the interval between the two " 50% points" of the changing signals

Propagation \& Contamination Delay

- Propagation delay: the maximum time from when an input changes until the output or outputs reach their final value.
- Contamination delay: the minimum time from when an input changes until any output starts to change its value.

Given a circuit diagram, calculate its propagation delay and contamination delay

Need to know

- The propagation and contamination delay of each logic gate used

Gate	t_pd (propagation)	t_cd (contamination)
2-input AND	100 picoseconds	6o picoseconds
2-input OR	120 picoseconds	40 picoseconds

Calculate Propagation Delay

- Find the critical path (path with the largest number of gates)
- then sum up the propagation delay of all the gates on the critical path
- $100+120+100=320$ picoseconds

Gate	t_pd	t_cd
2-input AND	100 ps	60 ps
2-input OR	120 ps	40 ps

Calculate Contamination Delay

- Find the short path (path with the smallest number of gates)
- then sum up the contamination delay of all the gates on the short path
- 60 picoseconds

Gate	t_pd	t_cd
2-input AND	100 ps	60 ps
2 -input OR	120 ps	40 ps

Knowing how to calculate delays allows us to design circuits that are fast.

Quick intro: Tri-state buffer

$W E=1$

$W E=0$

$$
A=Y
$$

Example: design fast circuit

two different 4-1 muxes

Example: design fast circuit

- We care about the propagation delays of the two circuits.
- it tells us "how soon I can get the answer"
- More specifically, we care about the D-to-Y delay and S-to-Y delay because D and S may arrive at different time.

Gate	$\boldsymbol{t}_{p d}(\mathrm{ps})$
NOT	30
2-input AND	60
3-input AND	80
4-input OR	90
tristate (A to Y)	50
tristate (enable to Y)	35

- D-to-Y propagation delay:
- 2 x TRISTATE_AY = 100
- S-to-Y propagation delay
- TRISTATE_ENY + TRISTATE_AY
- = $35+50=85$

Gate	$\boldsymbol{t}_{p d}(\mathrm{ps})$
NOT	30
2-input AND	60
3-input AND	80
4-input OR	90
tristate (A to Y)	50
tristate (enable to Y)	35

- D-to-Y propagation delay:
- TRISTATE_AY = 50
- S-to-Y propagation delay
- NOT + AND2 + TRISTATE_ENY
- = $30+60+35=125$

Analysis result

- Circuit 1 propagation:
- D-to-Y: 100 ps
- S-to-Y: 85 ps

- Circuit 2 propagation

- D-to-Y: 50 ps
- S-to-Y: 125 ps
- Which circuit is faster?
- What if D and S arrive at the same time?
- What if D arrives earlier than S?
- What if S arrives earlier than D?

Delays: the lower/higher, the better?

- Propagation delay, typically, should be upper-bounded.
- shorter propagation means getting answer faster
- How to make it lower?
- shorten the critical path
- Contamination delay, typically, should be lower-bounded
- want to reliably sample the value before change.
- How to make it longer?
- add buffers to the short path

New Topic:

Processor

Components

Using what we have learned so far (combinational logic, devices, sequential circuits, FSMs), how do we build a processor?

The Final Destination

Deconstructing processors

- Simpler at a high level:

- Datapath: where all data computations take place.
- Often a diagram version of real wired connections.
- Control unit: orchestrates the actions that take place in the datapath.
- The control unit is a big finite-state machine that instructs the datapath to perform all appropriate actions.
||III. Datapath example

Example: Calculate x² + 2x

- Assume that you have access to a value from an external source. How would you calculate $\mathrm{x}^{2}+2 \mathrm{x}$ with components you've seen so far?
- Components needed:
- ALU (to add, subtract and multiply values)
- Multiplexers (to determine what the inputs should be to the ALU)
- Registers (to hold values used in the calculation)

Example schematic

Making the calculation

- Steps for $\mathrm{X}^{2}+2 \mathrm{x}$:
- Load X into RA \& RB
- Multiply RA \& RB
- Store result in RA
- Add X to RA

- Store result in RA
- Add X to RA again
- ALU output is $\mathrm{x}^{2}+2 \mathrm{x}$.
- How do we make this happen?

Making the calculation

High-level Steps

- Load X into RA \& RB
- Multiply RA \& RB
- Store result in RA
- Add X to RA
- Store result in RA
- Add X to RA again

ALU output is $\mathrm{X}^{2}+2 \mathrm{x}$.

- Who sends these signals?
- Basically, a giant Finite State Machine
- Synchronized to system-wide signals (clock, resetn)
- Outputs the datapath control signals
- SelxA, SelAB => control mux outputs (ALU inputs)
- ALUop => controls ALU operation
- LdRA, LdRB => controls loading for registers RA, RB
- Some architectures also output a done signal, when the computation is complete

Yet another output; not shown in our datapaths

Datapath + Control

Microprocessors

- So far, we've been talking about making devices, such as adders, counters and registers.
- The ultimate goal is to make a microprocessor, which is a digital device that processes input, can store values and produces output, according to a set of on-board instructions.

The Final Destination

Deconstructing processors

- Processors aren't so bad when you consider them piece by piece:

Microprocessors

- These devices are a combination of the units that we've discussed so far:
- Registers to store values.
- Adders and shifters to process data.
- Finite state machines to control the process.
- Microprocessors are the basis of all computing since the 1970's, and can be found in nearly every sort of electronics.

The "Arithmetic Thing"

aka: the Arithmetic Logic Unit (ALU)

We are here

Arithmetic Logic Unit

- The first microprocessor applications were calculators.
- Recall the unit on adders and subtractors.
- These are part of a larger
 structure called the arithmetic logic unit (ALU).
- This larger structure is responsible for the processing of all data values in a basic CPU.

ALU inputs

- The ALU performs all of the arithmetic operations covered in this course so far, and logical operations as well (AND, OR, NOT, etc.)
- A and B are the operands
- The select bits (S) indicate which operation is being performed (S_{2} is a mode select bit, indicating whether the ALU is in arithmetic or logic mode).
- The carry bit $\mathrm{C}_{\text {in }}$ is used in operations such as incrementing an input value or the overall result.

ALU outputs

- In addition to the input signals, there are output signals V, C, N \& Z which indicate special conditions in the arithmetic result:

- V: overflow condition
- The result of the operation could not be stored in the n bits of G , meaning that the result is incorrect.
- C: carry-out bit
- N: Negative indicator
- Z: Zero-condition indicator

The "A" of ALU

- To understand how the ALU does all of these operations, let's start with the arithmetic side.
- Fundamentally, this side is made of an adder / subtractor unit, which we've seen already:

ALU block diagram

- In addition to data inputs and outputs, this circuit also has:
- outputs indicating the different conditions,
- inputs specifying the operation to perform (similar to Sub).

Arithmetic components

- In addition to addition and subtraction, many more operations can be performed by manipulating what is added to input B , as shown in the diagram above.

Arithmetic operations

- If the input logic circuit on the left sends B straight through to the adder, result is $\mathrm{G}=\mathrm{A}+\mathrm{B}$
- What if B was replaced by all ones instead?
- Result of addition operation: $\mathrm{G}=\mathrm{A}-1$
- What if B was replaced by $\overline{\mathrm{B}}$?
- Result of addition operation: $\mathrm{G}=\mathrm{A}-\mathrm{B}-1$
- And what if B was replaced by all zeroes?
- Result is: G = A. (Not interesting, but useful!)
\rightarrow Instead of a Sub signal, the operation you want is signaled using the select bits S_{0} \& S_{1}.

Operation selection

Select bits		Y input	Result	Operation
S_{1}	$\mathrm{~S}_{0}$			
0	0	All 0s	$\mathrm{G}=\mathrm{A}$	Transfer
0	1	B	$\mathrm{G}=\mathrm{A}+\mathrm{B}$	Addition
1	0	\bar{B}	$\mathrm{G}=\mathrm{A}+\overline{\mathrm{B}}$	Subtraction -1
1	1	All 1s	$\mathrm{G}=\mathrm{A}-1$	Decrement

- This is a good start! But something is missing...
- What about the carry bit?

Full operation selection

Select		Input	Operation	
S_{1}	$\mathrm{~S}_{0}$	Y	$\mathrm{C}_{\mathrm{in}}=0$	$\mathrm{C}_{\mathrm{in}}=1$
$\mathbf{0}$	0	All 0s	$\mathrm{G}=\mathrm{A}$ (transfer)	$\mathrm{G}=\mathrm{A}+1$ (increment)
$\mathbf{0}$	1	B	$\mathrm{G}=\mathrm{A}+\mathrm{B}$ (add)	$\mathrm{G}=\mathrm{A}+\mathrm{B}+1$
1	0	$\overline{\mathrm{~B}}$	$\mathrm{G}=\mathrm{A}+\overline{\mathrm{B}}$	$\mathrm{G}=\mathrm{A}+\overline{\mathrm{B}}+1$ (subtract)
1	1	All 1s	$\mathrm{G}=\mathrm{A}-1$ (decrement)	$\mathrm{G}=\mathrm{A}$ (transfer)

- Based on the values on the select bits and the carry bit, we can perform any number of basic arithmetic operations by manipulating what value is added to A .

The "L" of ALU

- We also want a circuit that can perform logical operations, in addition to arithmetic ones.
- How do we tell which operation to perform?

- Another select bit!
- If $\mathrm{S}_{2}=1$, then logic circuit block is activated.
- Multiplexer is used to determine which block (logical or arithmetic) goes to the output.

Single ALU Stage

Multiplication

What about multiplication?

- Multiplication (and division) operations are always more complicated than other arithmetic (addition, subtraction) or logical (AND, OR) operations.
- Three major ways that multiplication can be implemented in circuitry:
- Layered rows of adder units.
- An adder/shifter circuit
- Booth's Algorithm

Multiplication

- Multiplier circuits can be constructed as an array of adder circuits.
- This can get a little
 expensive as the size of the operands grows.
- Is there an alternative to this circuit?

Multiplication

- Revisiting grade 3 math...

Multiplication

- And now, in binary...

Observations

- Calculation flow
- Multiply by 1 bit of multiplier
- Add to sum and shift sum
- Shift multiplier by 1 bit
- Repeat the above
- What is "multiply by 1 bit of binary"?
- 10101 x 1 ?
- 10101 x 0 ?
- It's an AND!

Accumulator circuits

- What if you could perform each stage of the multiplication operation, one after the other?
- This circuit would only need a single row of adders and a couple of shift registers.

Make it more efficient

Think about 258×9999

- Multiply by 9, add to sum, shift, multiply by 9, add to sum, shift, multiple by 9 , add to sum, shift, multiply by 9 , add to sum.
- $258 \times 9999=258 \times(10000-1)=258 \times 10000-258$
- Just shift 258, becomes 2580000, then do 2580000-258
- More efficient!

Efficient Multiplication: Booth's Algorithm

- Take advantage of circuits where shifting is cheaper than adding, or where space is at a premium.
- when multiplying by certain values (e.g. 99), it can be easier to think of this operation as a difference between two products.
- Consider the shortcut method when multiplying a given decimal value X by 9999 :
- $X * 9999=X * 10000-X * 1$
- Now consider the equivalent problem in binary:
- X*001111 = X*010000 - X*1
- More details: https:/len.wikipedia.org/wik/Booth\%\%275 multiplication algorithm

Reflections on multiplication

- Multiplication isn't as common an operation as addition or subtraction, but occurs enough that its implementation is handled in the hardware.
- Most common multiplication and division operations are powers of 2 . For this, we do shifting instead of using the multiplier circuit.
e.g., in your code, do $x \ll 3$, instead of $x * 8$

A Barrel Shifter unit

- This barrel shifter shifts and rotates D to the left by S bits.
- If $S_{2} S_{5}$ is 01 = $Y=D_{2} D_{1} D_{0} D_{3}$
- If $S_{1} S_{0}$ is $11 \Rightarrow Y=D_{0} D_{3} D_{2} D_{1}$
- This is a purely combinational circuit, unlike the shift registers in the lab.

Expanding our view

CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto
Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

Booth's Algorithm

- This idea is triggered on cases where two neighboring digits in an operand are different.
- If digits at i and i-1 are 0 and 1 , the multiplicand is added to the result at position i.
- If digits at i and i-1 are 1 and 0 , the multiplicand is subtracted from the result at position i.
- The result is always a value whose size is the sum of the sizes of the two multiplicands.

Booth's Algorithm

- Example:

Booth's Algorithm

- We need to make this work in hardware.
- Option \#1: Have hardware set up to compare neighbouring bits at every position in \mathbb{A}, with adders in place for when the bits don't match.
- Problem: This is a lot of hardware, which Booth's Algorithm is trying to avoid.
- Option \#2: Have hardware set up to compare two neighbouring bits, and have them move down through A, looking for mismatched pairs.
- Problem: Hardware doesn't move like that. Oops.

ill Booth's Algorithm

- Still need to make this work in hardware...
- Option \#3: Have hardware set up to compare two neighbouring bits in the lowest position of A, and looking for mismatched pairs in A by shifting A to the right one bit at a time.
- Solution! This could work, but the accumulated solution P would have to shift one bit at a time as well, so that when B is added or subtracted, it's from the correct position.

Booth's Algorithm

- Steps in Booth's Algorithm:

1. Designate the two multiplicands as A \& B, and the result as some product P.
2. Add an extra zero bit to the right-most side of A.
3. Repeat the following for each original bit in A:
a) If the last two bits of A are the same, do nothing.
b) If the last two bits of A are 01 , then add B to the highest bits of P.
c) If the last two bits of A are 10, then subtract B from the highest bits of P.
d) Perform one-digit arithmetic right-shift on both P and A . The result in P is the product of A and B .

Booth's Algorithm Example

- Example: (-5) * 2
- Steps \#1 \& \#2:
- A =-5 $\rightarrow \quad 11011$
" Add extra zero to the right $\rightarrow \mathrm{A}=110110$
- B = $2 \rightarrow 00010$
- $-B=-2 \rightarrow 11110$
- $\mathrm{P}=0 \rightarrow 0000000000$

Booth's Algorithm Example

- Step \#3 (repeat 5 times):
- Check last two digits of A:

110110

- Since digits are 10 , subtract B from the most significant digits of P :

$$
\begin{array}{crr}
P & 00000 & 00000 \\
-B & +11110 & \\
P^{\prime} & 11110 & 00000 \\
\hline
\end{array}
$$

- Arithmetic shift P and A one bit to the right:

$$
A=111011 \quad P=1111100000
$$

Booth's Algorithm Example

- Step \#3 (repeat 4 more times):
- Check last two digits of A:

111011

\square

- Since digits are 11, do nothing to P.
- Arithmetic shift P and A one bit to the right:
- $A=111101 \quad P=1111110000$

Booth's Algorithm Example

- Step \#3 (repeat 3 more times):
- Check last two digits of A:

111101 \square

- Since digits are 01, add B to the most significant digits of P :

$$
\begin{array}{rrr}
\mathrm{P} & 11111 & 10000 \\
+\mathrm{B} & +00010 & \\
\mathrm{P}^{\prime} & 00001 & 10000 \\
\hline
\end{array}
$$

- Arithmetic shift P and A one bit to the right:

$$
A=111110 \quad P=0000011000
$$

Booth's Algorithm Example

- Step \#3 (repeat 2 more times):
- Check last two digits of A:

111110

- Since digits are 10 , subtract B from the most significant digits of P :

$$
\begin{array}{crr}
\mathrm{P} & 00000 & 11000 \\
-\mathrm{B} & +11110 & \\
\mathrm{P}^{\prime} & 11110 & 11000 \\
\hline
\end{array}
$$

- Arithmetic shift P and A one bit to the right:

$$
A=111111 \quad P=1111101100
$$

Booth's Algorithm Example

- Step \#3 (final time):
- Check last two digits of A:

$1 1 1 1 \longdiv { 1 1 }$

- Since digits are 11, do nothing to P:
- Arithmetic shift P and A one bit to the right:
- $A=111111 \quad P=1111110110$
- Final product:

$$
\begin{aligned}
P & =111110110 \\
& =-10
\end{aligned}
$$

