
CSCB58:
Computer Organization

Prof. Gennady Pekhimenko

University of Toronto

Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

CSCB58 Week 7

2

3

Circuit Timing

Timing

▪ So far we have been worrying whether a circuit is correct.

▪ Now let’s think about how to make a circuit fast.

▪ Key concept: latency

 propagation delay

 contamination delay

4

Delay Example

▪ We measure the interval

between the two “50% points”

of the changing signals

5

Propagation & Contamination Delay

▪ Propagation delay: the
maximum time from when an
input changes until the output or
outputs reach their final value.

▪ Contamination delay: the
minimum time from when an
input changes until any output
starts to change its value.

6

Given a circuit diagram,

calculate its propagation delay

and contamination delay

7

Need to know

▪ The propagation and contamination
delay of each logic gate used

8

Gate t_pd
(propagation)

t_cd
(contamination)

2-input AND 100 picoseconds 60 picoseconds

2-input OR 120 picoseconds 40 picoseconds

Calculate Propagation Delay

▪ Find the critical path (path with the largest number of gates)

▪ then sum up the propagation delay of all the gates on the
critical path

▪ 100 + 120 + 100 = 320 picoseconds

9

Gate t_pd t_cd

2-input AND 100 ps 60 ps

2-input OR 120 ps 40 ps

Calculate Contamination Delay

▪ Find the short path (path with the smallest number of gates)

▪ then sum up the contamination delay of all the gates on the
short path

▪ 60 picoseconds

10

Gate t_pd t_cd

2-input AND 100 ps 60 ps

2-input OR 120 ps 40 ps

Knowing how to calculate delays allows us
to design circuits that are fast.

11

WE = 1

WE

A Y

A Y

WE = 0

A Y

WE A Y

0 X Z

1 0 0

1 1 1

12

Quick intro:
Tri-state buffer

Example: design fast circuit

13

two different
4-1 muxes

Example: design fast circuit

14

• We care about the
propagation delays of
the two circuits.
• it tells us “how soon I

can get the answer”
• More specifically, we care

about the D-to-Y delay
and S-to-Y delay because
D and S may arrive at
different time.

▪ D-to-Y propagation delay:

▪ 2 x TRISTATE_AY = 100

▪ S-to-Y propagation delay

▪ TRISTATE_ENY + TRISTATE_AY

▪ = 35 + 50 = 85

15

▪ D-to-Y propagation delay:

▪ TRISTATE_AY = 50

▪ S-to-Y propagation delay

▪ NOT + AND2 + TRISTATE_ENY

▪ = 30 + 60 + 35 = 125

16

Analysis result

▪ Circuit 1 propagation:

 D-to-Y: 100 ps

 S-to-Y: 85 ps

▪ Circuit 2 propagation

 D-to-Y: 50 ps

 S-to-Y: 125 ps

▪ Which circuit is faster?

 What if D and S arrive at the same time?

 What if D arrives earlier than S?

 What if S arrives earlier than D?
17

Delays: the lower/higher, the better?

▪ Propagation delay, typically, should
be upper-bounded.
 shorter propagation means getting

answer faster

 How to make it lower?

 shorten the critical path

▪ Contamination delay, typically,
should be lower-bounded
 want to reliably sample the value

before change.

 How to make it longer?

 add buffers to the short path
18

19

New Topic:

Processor

Components

20

Using what we have learned so far
(combinational logic, devices, sequential
circuits, FSMs), how do we build a processor?

21

Read reg 1

Read reg 2

Write reg

Write data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
A

B

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0] 0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1

P
C

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Opcode

Control
Unit

Shift left 2
Sign

extend

The Final Destination

22

Deconstructing processors

▪ Simpler at a high level:

Storage
Unit

Arithmetic
Unit

Controller
Unit “Datapath”

Datapath vs. Control

▪ Datapath: where all data computations take place.

 Often a diagram version of real wired connections.

▪ Control unit: orchestrates the actions that take place in the
datapath.

 The control unit is a big finite-state machine that instructs the
datapath to perform all appropriate actions.

Datapath example

Example: Calculate x2 + 2x

▪ Assume that you have access to a value from an external
source. How would you calculate x2 + 2x with components
you’ve seen so far?

▪ Components needed:

 ALU (to add, subtract and multiply values)

 Multiplexers (to determine what the inputs should be to the ALU)

 Registers (to hold values used in the calculation)

Example schematic

ALU

0 1 0 1

X

SelxA SelAB

ALUop

LdRA LdRBRBRA

Making the calculation

▪ Steps for x2 + 2x:
 Load X into RA & RB

 Multiply RA & RB
 Store result in RA

 Add X to RA
 Store result in RA

 Add X to RA again
 ALU output is x2 + 2x.

▪ How do we make this happen?

Making the calculation

High-level Steps Control Signals

▪ Load X into RA & RB

▪ Multiply RA & RB
 Store result in RA

▪ Add X to RA
 Store result in RA

▪ Add X to RA again
 ALU output is x2 + 2x.

▪ Who sends these signals?

▪ SelxA = 0, ALUop = A,
LdRA = 1, LdRB = 1

▪ SelxA = 1, SelAB = 1,
ALUop = Multiply, LdRA = 1

▪ SelxA = 0, SelAB = 0,
ALUop = Add, LdRA = 1

▪ SelxA = 0, SelAB = 0,
ALUop = Add

Control Unit

▪ Basically, a giant Finite State Machine

 Synchronized to system-wide signals (clock, resetn)

▪ Outputs the datapath control signals

 SelxA, SelAB => control mux outputs (ALU inputs)

 ALUop => controls ALU operation

 LdRA, LdRB => controls loading for registers RA, RB

▪ Some architectures also output a done signal,
when the computation is complete

 Yet another output; not shown in our datapaths

Datapath + Control

Datapath

(ALU,
registers,

muxes)

x

F (ALU
result)

selxA

selAB

LdRA

LdRB

ALUop

resetn

FSM

go

clk

done

8 bits

8 bits

These signals
are optional,
for whenever
the operation
starts or stops

Microprocessors

▪ So far, we’ve been talking
about making devices,
such as adders, counters
and registers.

▪ The ultimate goal is to
make a microprocessor, which is a digital
device that processes input, can store values
and produces output, according to a set of
on-board instructions.

32

Read reg 1

Read reg 2

Write reg

Write data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
A

B

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0] 0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1

P
C

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Opcode

Control
Unit

Shift left 2
Sign

extend

The Final Destination

33

Deconstructing processors

▪ Processors aren’t so bad when you consider
them piece by piece:

Storage
Thing

Arithmetic
Thing

Controller
Thing

34

Microprocessors

▪ These devices are a
combination of the
units that we’ve
discussed so far:
 Registers to store values.

 Adders and shifters to process data.

 Finite state machines to control the process.

▪ Microprocessors are the basis of all
computing since the 1970’s, and can be found
in nearly every sort of electronics.

35

aka: the Arithmetic Logic Unit (ALU)

The “Arithmetic Thing”

36

We are here

Assembly Language

Processors

Finite State
Machines

Arithmetic
Logic Units

Devices Flip-flops

Circuits

Gates

Transistors

37

Arithmetic Logic Unit

▪ The first microprocessor
applications were calculators.

 Recall the unit on adders and
subtractors.

 These are part of a larger
structure called the arithmetic
logic unit (ALU).

▪ This larger structure is responsible for the
processing of all data values in a basic CPU.

38

ALU inputs

▪ The ALU performs all of
the arithmetic operations
covered in this course so
far, and logical operations
as well (AND, OR, NOT, etc.)
 A and B are the operands

 The select bits (S) indicate which operation is
being performed (S2 is a mode select bit,
indicating whether the ALU is in arithmetic or
logic mode).

 The carry bit Cin is used in operations such as
incrementing an input value or the overall result.

A B

G

Cin,S VCNZ

39

ALU outputs

▪ In addition to the input
signals, there are output
signals V, C, N & Z which
indicate special conditions
in the arithmetic result:
 V: overflow condition

 The result of the operation could not be stored in
the n bits of G, meaning that the result is incorrect.

 C: carry-out bit

 N: Negative indicator

 Z: Zero-condition indicator

A B

G

Cin,S VCNZ

40

The “A” of ALU

▪ To understand how the ALU does all of these operations,
let’s start with the arithmetic side.

▪ Fundamentally, this side is made of an adder / subtractor
unit, which we’ve seen already:

Cin
FA

X0

Y0

S0

FA

X1

Y1

S1

C1
FA

X2

Y2

S2

C2
FA

X3

Y3

S3

C3Cout

Sub

41

ALU block diagram

▪ In addition to data inputs and outputs, this circuit also has:

 outputs indicating the different conditions,

 inputs specifying the operation to perform (similar to Sub).

n-bit
ALU

A0
A1
…
An

B0
B1
…
Bn

...

...

G0
G1
…
Gn

...

Data input A

Data input B

Data output G

Cin

S0

S2

S1

Carry input

Operation &
Mode select

Cout Carry output

Overflow indicator

Negative indicator
Zero indicator

V

N

Z

42

Arithmetic components

▪ In addition to addition and subtraction, many more
operations can be performed by manipulating what
is added to input B, as shown in the diagram above.

B input
logic

n-bit
parallel
adder

A

B

Cin

S0

S1

G

G = X + Y + Cin

Cout

X

Y

n

n
n

n

43

Arithmetic operations

▪ If the input logic circuit on the left sends B straight through
to the adder, result is G = A+B

▪ What if Bwas replaced by all ones instead?
 Result of addition operation: G = A-1

▪ What if Bwas replaced by B?
 Result of addition operation: G = A-B-1

▪ And what if Bwas replaced by all zeroes?
 Result is: G = A. (Not interesting, but useful!)

→ Instead of a Sub signal, the operation you want is signaled
using the select bits S0 & S1.

44

Operation selection

▪ This is a good start! But something is missing…

▪ What about the carry bit?

Select
bits Y

input
Result Operation

S1 S0

0 0 All 0s G = A Transfer

0 1 B G = A+B Addition

1 0 B G = A+B Subtraction - 1

1 1 All 1s G = A-1 Decrement

45

Full operation selection

▪ Based on the values on the select bits and the
carry bit, we can perform any number of basic
arithmetic operations by manipulating what
value is added to A.

Select Input Operation

S1 S0 Y Cin=0 Cin=1

0 0 All 0s G = A (transfer) G = A+1 (increment)

0 1 B G = A+B (add) G = A+B+1

1 0 B G = A+B G = A+B+1 (subtract)

1 1 All 1s G = A-1 (decrement) G = A (transfer)

46

The “L” of ALU

▪ We also want a circuit
that can perform
logical operations,
in addition to
arithmetic ones.

▪ How do we tell
which operation
to perform?
 Another select bit!

▪ If S2 = 1, then logic circuit block is activated.
▪ Multiplexer is used to determine which block

(logical or arithmetic) goes to the output.

4-to-1
mux

A

B

S0

S1

G

1

0

3

2

47

Single ALU Stage

Logic
circuit

S0

S1
Gi

S0

S1

Ai

Bi

Ai

Bi Arithmetic
circuit

S0

S1

Ai

Bi

Ci
Ci+1

Ci

0

1

S2

V

N

Z

Gi

Gi

48

Multiplication

49

What about multiplication?

▪ Multiplication (and division) operations are always more
complicated than other arithmetic (addition, subtraction) or
logical (AND, OR) operations.

▪ Three major ways that multiplication can be implemented in
circuitry:

 Layered rows of adder units.

 An adder/shifter circuit

 Booth’s Algorithm

50

Multiplication

▪ Multiplier circuits can
be constructed as
an array of adder
circuits.

▪ This can get a little
expensive as the size of the operands grows.

▪ Is there an alternative to this circuit?

51

Multiplication

▪ Revisiting grade 3 math…

123

x 456

12 3

x 456

1368

1 2 3

x 456

1368

912

1 23

x 456

1368

912

456

123

x 456

1368

912

456

56088

52

Multiplication

▪ And now, in binary…

101

x 110

10 1

x 110

110

1 0 1

x 110

110

000

1 01

x 110

110

000

110

101

x 110

110

000

110

11110

53

Observations

▪ Calculation flow

 Multiply by 1 bit of multiplier

 Add to sum and shift sum

 Shift multiplier by 1 bit

 Repeat the above

▪ What is “multiply by 1 bit of binary”?

 10101 x 1 ?

 10101 x 0 ?

 It’s an AND!

54

101

x 110

110

000

110

11110

Accumulator circuits
▪ What if you could perform each stage of the

multiplication operation, one after the other?

 This circuit would only
need a single row of
adders and a couple
of shift registers.

Adder

Register R

Shift Left 1

Shift Left 1

Register Y

Register X

1xn AND

55

101

x 110

110

000

110

11110

Make it more efficient

Think about 258 x 9999

▪ Multiply by 9, add to sum, shift, multiply by 9, add to sum, shift,
multiple by 9, add to sum, shift, multiply by 9, add to sum.

▪ 258 x 9999 = 258 x (10000 - 1) = 258 x 10000 – 258

▪ Just shift 258, becomes 2580000, then do 2580000 – 258

▪ More efficient!

56

Efficient Multiplication: Booth’s Algorithm

▪ Take advantage of circuits where shifting is cheaper than
adding, or where space is at a premium.
 when multiplying by certain values (e.g. 99), it can be easier to think

of this operation as a difference between two products.

▪ Consider the shortcut method when multiplying a given
decimal value X by 9999:

 X*9999 = X*10000 – X*1

▪ Now consider the equivalent problem in binary:
 X*001111 = X*010000 – X*1

▪ More details: https://en.wikipedia.org/wiki/Booth%27s_multiplication_algorithm

57

https://en.wikipedia.org/wiki/Booth's_multiplication_algorithm

Reflections on multiplication

▪ Multiplication isn’t as common an operation as addition or
subtraction, but occurs enough that its implementation is
handled in the hardware.

▪ Most common multiplication and division operations are
powers of 2. For this, we do shifting instead of using the
multiplier circuit.

 e.g., in your code, do x << 3, instead of x * 8

58

A Barrel Shifter unit

▪ This barrel shifter shifts and rotates D to the left by S bits.
 If S1S0 is 01 => Y = D2D1D0D3

 If S1S0 is 11 => Y = D0D3D2D1

▪ This is a purely combinational circuit, unlike the shift registers in
the lab.

D3

S0

3 S1 S0

D2 D1 D0

Y0Y1Y2Y3

S1

012 3 S1 S0012 3 S1 S0012 3 S1 S0012

4-to-1 MUX4-to-1 MUX4-to-1 MUX4-to-1 MUX

Expanding our view

▪ So where do A and
B come from?

AG select B

V,C,N,Z ALU
Shifter

B

S2:0,Cin

MuxB select01

H select

IR IL

MuxF select01

G H

n

n n

F

Address out

Data out

Constant in

A B

Storage
Thing

Arithmetic
Thing

Controller
Thing

61

Next

CSCB58:
Computer Organization

Prof. Gennady Pekhimenko

University of Toronto

Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

Booth’s Algorithm

▪ This idea is triggered on cases where two neighboring digits in
an operand are different.
 If digits at i and i-1 are 0 and 1, the multiplicand is added to the

result at position i.

 If digits at i and i-1 are 1 and 0, the multiplicand is subtracted from
the result at position i.

▪ The result is always a value whose size is the sum of the sizes
of the two multiplicands.

Booth’s Algorithm

▪ Example:

01010010

x 00011110

01010010

+ 111110101110

0100110011100

B

A

Subtract B
from here

Add B here

Sign extend this
before adding

Booth’s Algorithm

▪ We need to make this work in hardware.

 Option #1: Have hardware set up to compare neighbouring bits at
every position in A, with adders in place for when the bits don’t
match.

 Problem: This is a lot of hardware, which Booth’s Algorithm is trying to
avoid.

 Option #2: Have hardware set up to compare tw0 neighbouring bits,
and have them move down through A, looking for mismatched pairs.

 Problem: Hardware doesn’t move like that. Oops.

Booth’s Algorithm

▪ Still need to make this work in hardware…

 Option #3: Have hardware set up to compare tw0 neighbouring bits
in the lowest position of A, and looking for mismatched pairs in A by
shifting A to the right one bit at a time.

 Solution! This could work, but the accumulated solution Pwould have to
shift one bit at a time as well, so that when B is added or subtracted, it’s
from the correct position.

Booth’s Algorithm

▪ Steps in Booth’s Algorithm:
1. Designate the two multiplicands as A & B, and the

result as some product P.

2. Add an extra zero bit to the right-most side of A.

3. Repeat the following for each original bit in A:
a) If the last two bits of A are the same, do nothing.

b) If the last two bits of A are 01, then add B to the highest
bits of P.

c) If the last two bits of A are 10, then subtract B from the
highest bits of P.

d) Perform one-digit arithmetic right-shift on both P and A.

4. The result in P is the product of A and B.

Booth’s Algorithm Example

▪ Example: (-5) * 2

▪ Steps #1 & #2:

 A = -5 → 11011

 Add extra zero to the right → A = 11011 0

 B = 2 → 00010

 -B = -2 → 11110

 P = 0 → 00000 00000

Booth’s Algorithm Example

▪ Step #3 (repeat 5 times):

 Check last two digits of A:

1101 10

 Since digits are 10, subtract B from the most significant digits of P:

P 00000 00000

-B +11110

P’ 11110 00000

 Arithmetic shift P and A one bit to the right:

 A = 111011 P = 11111 00000

Booth’s Algorithm Example

▪ Step #3 (repeat 4 more times):

 Check last two digits of A:

1110 11

 Since digits are 11, do nothing to P.

 Arithmetic shift P and A one bit to the right:

 A = 111101 P = 11111 10000

Booth’s Algorithm Example

▪ Step #3 (repeat 3 more times):

 Check last two digits of A:

1111 01

 Since digits are 01, add B to the most significant digits of P:

P 11111 10000

+B +00010

P’ 00001 10000

 Arithmetic shift P and A one bit to the right:

 A = 111110 P = 00000 11000

Booth’s Algorithm Example

▪ Step #3 (repeat 2 more times):

 Check last two digits of A:

1111 10

 Since digits are 10, subtract B from the most significant digits of P:

P 00000 11000

-B +11110

P’ 11110 11000

 Arithmetic shift P and A one bit to the right:

 A = 111111 P = 11111 01100

▪ Step #3 (final time):

 Check last two digits of A:

1111 11

 Since digits are 11, do nothing to P:

 Arithmetic shift P and A one bit to the right:

 A = 111111 P = 11111 10110

▪ Final product: P = 111110110

= -10

Booth’s Algorithm Example

