CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto Fall 2020

The content of this lecture is adapted from the lectures of Larry Zheng and Steve Engels

CSCB58 Week 7

Circuit Timing

Timing

- So far we have been worrying whether a circuit is correct.
- Now let's think about how to make a circuit fast.
- Key concept: latency
 - propagation delay
 - contamination delay

Delay Example

 We measure the interval between the two "50% points" of the changing signals

Propagation & Contamination Delay

- Propagation delay: the maximum time from when an input changes until the output or outputs reach their final value.
- Contamination delay: the minimum time from when an input changes until any output starts to change its value.

Given a circuit diagram, calculate its propagation delay and contamination delay

Need to know

 The propagation and contamination delay of each logic gate used

Gate	t_pd (propagation)	t_cd (contamination)
2-input AND	100 picoseconds	60 picoseconds
2-input OR	120 picoseconds	40 picoseconds

Calculate Propagation Delay

- Find the critical path (path with the largest number of gates)
- then sum up the propagation delay of all the gates on the critical path
- 100 + 120 + 100 = 320 picoseconds

Gate	t_pd	t_cd
2-input AND	100 ps	60 ps
2-input OR	120 ps	40 ps

Calculate Contamination Delay

- Find the short path (path with the smallest number of gates)
- then sum up the contamination delay of all the gates on the short path
- 60 picoseconds

Gate	t_pd	t_cd
2-input AND	100 ps	6o ps
2-input OR	120 ps	40 ps

Knowing how to calculate delays allows us to design circuits that are fast.

Quick intro: Tri-state buffer

WE	Α	Y
0	x	Z
1	0	0
1	1	1

WE = 1

Example: design fast circuit

two different 4-1 muxes

Example: design fast circuit

- We care about the **propagation** delays of the two circuits.
 - it tells us "how soon I can get the answer"
- More specifically, we care about the D-to-Y delay and S-to-Y delay because D and S may arrive at different time.

Gate	t _{pd} (ps)
NOT	30
2-input AND	60
3-input AND	80
4-input OR	90
tristate (A to Y)	50
tristate (enable to Y)	35

- D-to-Y propagation delay:
- 2 x TRISTATE AY = 100

- S-to-Y propagation delay
- TRISTATE_ENY + TRISTATE_AY
- = 35 + 50 = 85

Gate	t _{pd} (ps)
NOT	30
2-input AND	60
3-input AND	80
4-input OR	90
tristate (A to Y)	50
tristate (enable to Y)	35

D-to-Y propagation delay:TRISTATE_AY = 50

- S-to-Y propagation delay
- NOT + AND2 + TRISTATE_ENY
- \blacksquare = 30 + 60 + 35 = 125

Analysis result

- Circuit 1 propagation:
 - D-to-Y: 100 ps
 - S-to-Y: 85 ps
- Circuit 2 propagation
 - D-to-Y: 50 ps
 - S-to-Y: 125 ps
- Which circuit is faster?
 - What if D and S arrive at the same time?
 - What if D arrives earlier than S?
 - What if S arrives earlier than D?

Delays: the lower/higher, the better?

- Propagation delay, typically, should be upper-bounded.
 - shorter propagation means getting answer faster
 - How to make it lower?
 - shorten the critical path
- Contamination delay, typically, should be lower-bounded
 - want to reliably sample the value before change.
 - How to make it longer?
 - add buffers to the short path

New Topic: Processor Components

Using what we have learned so far (combinational logic, devices, sequential circuits, FSMs), how do we build a processor?

The Final Destination

Deconstructing processors

Simpler at a high level:

Datapath vs. Control

Datapath: where all data computations take place.
 Often a diagram version of real wired connections.

- Control unit: orchestrates the actions that take place in the datapath.
 - The control unit is a big finite-state machine that instructs the datapath to perform all appropriate actions.

Datapath example

Example: Calculate $x^2 + 2x$

- Assume that you have access to a value from an external source. How would you calculate x² + 2x with components you've seen so far?
- Components needed:

- ALU (to add, subtract and multiply values)
- Multiplexers (to determine what the inputs should be to the ALU)
- Registers (to hold values used in the calculation)

Example schematic

Making the calculation

Steps for x² + 2x:

- Load X into RA & RB
- Multiply RA & RB
 - Store result in RA
- Add X to RA
 - Store result in RA
- Add X to RA again
 - ALU output is x² + 2x.
- How do we make this happen?

Making the calculation

High-level Steps

- Load X into RA & RB
- Multiply RA & RBStore result in RA
- Add X to RA
 - Store result in RA
- Add X to RA again
 ALU output is x² + 2x.

Control Signals

- SelxA = o, ALUop = A,
 LdRA = 1, LdRB = 1
- SelxA = 1, SelAB = 1, ALUop = Multiply, LdRA = 1
- SelxA = o, SelAB = o,
 ALUop = Add, LdRA = 1
- SelxA = o, SelAB = o, ALUop = Add

Who sends these signals?

Control Unit

- Basically, a giant Finite State Machine
 - Synchronized to system-wide signals (clock, resetn)
- Outputs the datapath control signals
 - SelxA, SelAB => control mux outputs (ALU inputs)
 - ALUop => controls ALU operation
 - LdRA, LdRB => controls loading for registers RA, RB
- Some architectures also output a done signal, when the computation is complete
 - Yet another output; not shown in our datapaths

Datapath + Control

Microprocessors

 So far, we've been talking about making devices, such as adders, counters and registers.

 The ultimate goal is to make a microprocessor, which is a digital device that processes input, can store values and produces output, according to a set of on-board instructions.

The Final Destination

Deconstructing processors

 Processors aren't so bad when you consider them piece by piece:

Microprocessors

- These devices are a combination of the units that we've discussed so far:
 - Registers to store values.
 - Adders and shifters to process data.
 - Finite state machines to control the process.
- Microprocessors are the basis of all computing since the 1970's, and can be found in nearly every sort of electronics.

The "Arithmetic Thing"

aka: the Arithmetic Logic Unit (ALU)

We are here

Arithmetic Logic Unit

- The first microprocessor applications were calculators.
 - Recall the unit on adders and subtractors.
 - These are part of a larger structure called the arithmetic logic unit (ALU).
- This larger structure is responsible for the processing of all data values in a basic CPU.

ALU inputs

- The ALU performs all of the arithmetic operations covered in this course so far, and logical operations as well (AND, OR, NOT, etc.)
 - A and B are the operands
 - The select bits (S) indicate which operation is being performed (S2 is a mode select bit, indicating whether the ALU is in arithmetic or logic mode).
 - The carry bit C_{in} is used in operations such as incrementing an input value or the overall result.

ALU outputs

- In addition to the input signals, there are output signals V, C, N & Z which indicate special conditions in the arithmetic result:
 - V: overflow condition
 - The result of the operation could not be stored in the n bits of G, meaning that the result is incorrect.
 - C: carry-out bit
 - N: Negative indicator
 - Z: Zero-condition indicator

The "A" of ALU

- To understand how the ALU does all of these operations, let's start with the arithmetic side.
- Fundamentally, this side is made of an adder / subtractor unit, which we've seen already:

ALU block diagram

- In addition to data inputs and outputs, this circuit also has:
 - outputs indicating the different conditions,
 - inputs specifying the operation to perform (similar to Sub).

Arithmetic components

 In addition to addition and subtraction, many more operations can be performed by manipulating what is added to input B, as shown in the diagram above.

Arithmetic operations

- If the input logic circuit on the left sends B straight through to the adder, result is G = A+B
- What if B was replaced by all ones instead?
 - Result of addition operation: G = A-1
- What if B was replaced by B?
 - Result of addition operation: G = A-B-1
- And what if B was replaced by all zeroes?
 - Result is: G = A. (Not interesting, but useful!)
- → Instead of a Sub signal, the operation you want is signaled using the select bits S₀ & S₁.

Operation selection

Select bits		¥.	Result	Operation	
S_1	S ₀	input			
0	0	All 0s	G = A	Transfer	
0	1	В	G = A+B	Addition	
1	0	B	$G = A + \overline{B}$	Subtraction - 1	
1	1	All 1s	G = A-1	Decrement	

- This is a good start! But something is missing...
- What about the carry bit?

Full operation selection

Select		Input	Operation		
S ₁	S ₀	Y	C _{in} =0	C _{in} =1	
0	0	All 0s	G = A (transfer)	G = A+1 (increment)	
0	1	В	G = A+B (add)	G = A+B+1	
1	0	B	$G = A + \overline{B}$	G = A+B+1 (subtract)	
1	1	All 1s	G = A-1 (decrement)	G = A (transfer)	

 Based on the values on the select bits and the carry bit, we can perform any number of basic arithmetic operations by manipulating what value is added to A.

The "L" of ALU

- We also want a circuit that can perform logical operations, in addition to arithmetic ones.
- How do we tell which operation to perform?
 - Another select bit!

- If S₂ = 1, then logic circuit block is activated.
- Multiplexer is used to determine which block (logical or arithmetic) goes to the output.

Single ALU Stage

What about multiplication?

- Multiplication (and division) operations are always more complicated than other arithmetic (addition, subtraction) or logical (AND, OR) operations.
- Three major ways that multiplication can be implemented in circuitry:
 - Layered rows of adder units.
 - An adder/shifter circuit
 - Booth's Algorithm

- Multiplier circuits can be constructed as an array of adder circuits.
- This can get a little
 expensive as the size of the operands grows.
- Is there an alternative to this circuit?

Revisiting grade 3 math...

And now, in binary...

Observations

- Calculation flow
 - Multiply by 1 bit of multiplier
 - Add to sum and shift sum
 - Shift multiplier by 1 bit
 - Repeat the above
- What is "multiply by 1 bit of binary"?
 - 10101 x 1 ?
 - 10101 x 0 ?
 - It's an AND!

Accumulator circuits

- What if you could perform each stage of the multiplication operation, one after the other?
 - This circuit would only need a single row of adders and a couple of shift registers.

Make it more efficient

Think about 258 x 9999

- Multiply by 9, add to sum, shift, multiply by 9, add to sum, shift, multiple by 9, add to sum, shift, multiply by 9, add to sum.
- 258 × 9999 = 258 × (10000 1) = 258 × 10000 258
- Just shift 258, becomes 2580000, then do 2580000 258
- More efficient!

Efficient Multiplication: Booth's Algorithm

- Take advantage of circuits where shifting is cheaper than adding, or where space is at a premium.
 - when multiplying by certain values (e.g. 99), it can be easier to think of this operation as a difference between two products.
- Consider the shortcut method when multiplying a given decimal value X by 9999:
 - X*9999 = X*10000 X*1
- Now consider the equivalent problem in binary:
 - X*001111 = X*010000 X*1
- More details: <u>https://en.wikipedia.org/wiki/Booth%27s_multiplication_algorithm</u>

Reflections on multiplication

- Multiplication isn't as common an operation as addition or subtraction, but occurs enough that its implementation is handled in the hardware.
- Most common multiplication and division operations are powers of 2. For this, we do shifting instead of using the multiplier circuit.

e.g., in your code, do x << 3, instead of x * 8</p>

A Barrel Shifter unit

- This barrel shifter shifts and rotates D to the left by S bits.
 - If S_1S_0 is 01 => $Y = D_2D_1D_0D_3$
 - If $S_1 S_0$ is 11 => Y = $D_0 D_3 D_2 D_1$
- This is a purely combinational circuit, unlike the shift registers in the lab.

Expanding our view

CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto Fall 2020

The content of this lecture is adapted from the lectures of Larry Zheng and Steve Engels

- This idea is triggered on cases where two neighboring digits in an operand are different.
 - If digits at i and i-1 are 0 and 1, the multiplicand is added to the result at position i.
 - If digits at i and i-1 are 1 and 0, the multiplicand is subtracted from the result at position i.
- The result is always a value whose size is the sum of the sizes of the two multiplicands.

Example:

- We need to make this work in hardware.
 - Option #1: Have hardware set up to compare neighbouring bits at every position in A, with adders in place for when the bits don't match.
 - <u>Problem</u>: This is a lot of hardware, which Booth's Algorithm is trying to avoid.
 - Option #2: Have hardware set up to compare two neighbouring bits, and have them move down through A, looking for mismatched pairs.
 - Problem: Hardware doesn't move like that. Oops.

- Still need to make this work in hardware...
 - Option #3: Have hardware set up to compare two neighbouring bits in the lowest position of A, and looking for mismatched pairs in A by shifting A to the right one bit at a time.
 - <u>Solution!</u> This could work, but the accumulated solution P would have to shift one bit at a time as well, so that when B is added or subtracted, it's from the correct position.

<u>Note:</u> unlike the accumulator, the bits here are being shifted to the right!

- Steps in Booth's Algorithm:
 - 1. Designate the two multiplicands as A & B, and the result as some product P.
 - 2. Add an extra zero bit to the right-most side of A.
 - **3.** Repeat the following for each original bit in A:
 - a) If the last two bits of A are the same, do nothing.
 - b) If the last two bits of A are 01, then add B to the highest bits of P.
 - c) If the last two bits of A are 10, then subtract B from the highest bits of P.
 - d) Perform one-digit arithmetic right-shift on both P and A.
 - 4. The result in P is the product of A and B.

- <u>Example</u>: (-5) * 2
- Steps #1 & #2:

- A = -5 → 11011
 - Add extra zero to the right → A = 11011 o
- $\blacksquare B = 2 \rightarrow 00010$
- □ -B = -2 → 11110
- $\square P = o \rightarrow ooooo ooooo$

Step #3 (repeat 5 times):

Check last two digits of A:

1101 10

Since digits are 10, subtract B from the most significant digits of P:

- P 00000 00000
- -B +11110
 - P' <u>11110 00000</u>
- Arithmetic shift P and A one bit to the right:
 - A = 111011 P = 11111 00000

- Step #3 (repeat 4 more times):
 - Check last two digits of A:

0	11	

Since digits are 11, do nothing to P.

- Arithmetic shift P and A one bit to the right:
 - A = 111101 P = 11111 10000

- Step #3 (repeat 3 more times):
 - Check last two digits of A:

- Since digits are o1, add B to the most significant digits of P:
 - P 11111 10000
 - +B +00010
 - P' 00001 10000
- Arithmetic shift P and A one bit to the right:
 - A = 111110 P = 00000 11000

- Step #3 (repeat 2 more times):
 - Check last two digits of A:

- Since digits are 10, subtract B from the most significant digits of P:
 - P 00000 11000
 - -B +11110
 - P' <u>11110 11000</u>
- Arithmetic shift P and A one bit to the right:
 - A = 111111 P = 11111 01100
Booth's Algorithm Example

Step #3 (final time):

Check last two digits of A:

Since digits are 11, do nothing to P:

Arithmetic shift P and A one bit to the right:

1111 11

• A = 111111 P = 11111 10110

Final product: P = 11110110
= -10