
CSCB58:
Computer Organization

Prof. Gennady Pekhimenko

University of Toronto

Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

CSCB58 Week 5

2

We are here

Assembly Language

Processors

Finite State
Machines

Arithmetic
Logic Units

Devices Flip-flops

Circuits

Gates

Transistors

3

Circuits using flip-flops

▪ Now that we know
about flip-flops and
what they do, how do
we use them in circuit
design?

▪ What’s the benefit in using
flip-flops in a circuit at all?

Combinational
Circuit

Inputs Outputs

Storage
Units

We can design much cooler circuits
using flip-flops.

4

Example #1: Registers

For storing values

5

Shift registers

▪ A series of D flip-flops can store a multi-bit value (such as a 16-
bit integer, for example).

▪ Data can be shifted into this register one bit at a time, over 16
clock cycles.

 Known as a shift register.

D0 Q

Q

D15 Q

Q

D1 Q

Q

D2 Q

Q

Clk

SI

6

Load registers

▪ One can also load a register’s values all at once, by feeding
signals into each flip-flop:

 In this example: a 4-bit load register.

D Q

Q

D Q

Q

D Q

Q

D Q

Q

Clk

D0 D1 D2 D3

One clock pulse, 4 bits stored.
7

Load registers

▪ To control when this register is allowed to load its values, we
introduce the D flip-flop with enable:

D Q

Q

EN

D2 Q

Q

D

EN

Clk

When EN = 1, D2 is whatever D is, load D
When EN = 0, D2 is whatever Q is, maintain Q

8

Load registers

▪ Implementing the register with these special
D flip-flops will now maintain values in the
register until overwritten by setting EN high.

D Q

Q

D Q

Q

D Q

Q

D Q

Q

Clk

D0 D1 D2 D3

Write

EN EN EN EN

9

In computer architecture, registers are the CPU’s most local
storages (30+ of them on-chip), i.e., they are the lowest level of
the memory hierarchy. They are the memory units that the CPU
directly interact with.

Higher level of memory include cache, RAM, hard disc, etc.

10

Example #2: Counters

11

Counters

▪ Consider the T flip-flop:
 Output is inverted when

input T is high.

▪ What happens when a
series of T flip-flops are
connected together in
sequence?

▪ More interesting:
 Connect the output of

one flip-flop to the clock
input of the next!

T Q

Q

D

Clk

Q

Q

T

12

Counters

▪ This is a 4-bit ripple counter, which is an example of
an asynchronous circuit.

 Timing isn’t quite synchronized with the rising clock pulse.

 Cheap to implement, but unreliable for timing.

T Q

Q

T Q

Q

T Q

Q

T Q

Q

Q0 Q1 Q2 Q3

1

Asynchronous means the four outputs do
not change upon the same clock signal.

13

Demo: asynchronous human counter

1. Need 4 volunteers, Q0, Q1, Q2, Q3

2.Q0 toggles when receives clock signal (tap on shoulder)

3. Q1 toggles when Q0 goes from 1 to 0

4.Q2 toggles when Q1 goes from 1 to o

5.Q3 toggles when Q2 goes from 1 to 0

6. Audience read the number Q3Q2Q1Q0

T Q

Q

T Q

Q

T Q

Q

T Q

Q

Q0 Q1 Q2 Q3

1

14

Counters

▪ Timing diagram

Q0

C

Q1

Q2

T Q

Q

T Q

Q

T Q

Q

T Q

Q

Q0 Q1 Q2 Q3

1

C

Q3

0

0

0

0

1

0

0

0

0

1

0

0

1

1

0

0

0

0

1

0

1

0

1

0

0

1

1

0

1

1

1

0

0

0

0

1

15

Synchronous Counter

▪ This is a synchronous counter, because all
output Q’s change upon the same clock edge.

Q0
Q1

T Q

Q

T Q

Q

Q3
T Q

Q

T Q

Q

Q2W
r
i
t
e

Clk

Toggle only when the lower bit is 1 and
is toggling to 0 (carry bit generated)

16

Counter with parallel load

▪ Counters are often implemented with a
parallel load and clear inputs.

 Can set the counter to whatever value needed.

D Q

Q

D Q

Q

Clk

R0
R1

0

1

0

1

Load

Write

Clear

When load is high, set states to R0 and R1

17

State Machines

18

Designing with flip-flops

▪ Counters and registers
are examples of how
flip-flops can implement
useful circuits that store
values.

 How do you design these circuits?

 What would you design with these circuits?

19

Designing with flip-flops

▪ Sequential circuits are the basis for memory, instruction
processing, and any other operation that requires the circuit
to remember past data values.

▪ These past data values are also called the states of the circuit.

▪ Need to describe the relation between the current state and
the next state: use combinational circuits

20

State example: Counters

▪ With counters, each state is the current
number that is stored in the counter.

▪ On each clock tick, the circuit transitions from
one state to the next, based on the inputs.

000

001 010 011

100

111 110 101

0

1
1 1

1

1

11

1

0 0 0

0

0 0 0

zero

one two three

four

seven six five

Each state does
not need to
correspond to a
binary number,
they are just
different states

21

State Tables

▪ State tables help to
illustrate how the
states of the circuit
change with various
input values.

 Transitions are
understood to take
place on the clock
ticks.

State Write State

zero 0 zero

zero 1 one

one 0 one

one 1 two

two 0 two

two 1 three

three 0 three

three 1 four

four 0 four

four 1 five

five 0 five

five 1 six

six 0 six

six 1 seven

seven 0 seven

seven 1 zero

22

State Tables

▪ Same table as on
the previous slide,
but with the
actual flip-flop
values instead of
state labels.
▪ Note: Flip-flop

values are both
inputs and outputs
of the circuit here.

F1 F2 F3 Write F1 F2 F3

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 0 1

0 0 1 1 0 1 0

0 1 0 0 0 1 0

0 1 0 1 0 1 1

0 1 1 0 0 1 1

0 1 1 1 1 0 0

1 0 0 0 1 0 0

1 0 0 1 1 0 1

1 0 1 0 1 0 1

1 0 1 1 1 1 0

1 1 0 0 1 1 0

1 1 0 1 1 1 1

1 1 1 0 1 1 1

1 1 1 1 0 0 0

23

Finite State Machines
and this brings us to…

24

Finite State Machines (FSMs)

▪ From theory courses…

 A Finite State Machine is an abstract model that captures
the operation of a sequential circuit.

▪ A FSM is defined (in general) by:

 A finite set of states,

 A finite set of transitions between states, triggered by
inputs to the state machine,

 Output values that are associated with each state or each
transition (depending on the machine),

 Start and end states for the state machine.

25

Design procedures comparison (roughly)

Combinational circuits
1. Desired behaviour
2. Truth table
3. Logic expression
4. Circuit Sequential circuits

1. Desired behaviour
(cooler behaviour)

2. Finite state machine
3. Circuit with flip-flops

26

Example #1: Tickle Me Elmo

▪ Remember how the
Tickle Me Elmo works!

27

Example #1: Tickle Me Elmo

▪ Toy reacts differently each time it is squeezed:

 First squeeze → “Ha ha ha…that tickles.”

 Second squeeze → “Ha ha ha…oh boy.”

 Third squeeze → “HA HA HA HA…”, go crazy

▪ Questions to ask:

 What are the inputs?

 What are the states of this machine?

 How do you change from one state to the next?

28

Example #1: Tickle Me Elmo

Initial

Tickles

OhBoy

GoCrazy

Squeeze

Squeeze

Squeeze

Squeeze

29

Example #2: Traffic Light

Red

Yellow Green

Change=1 Change=1

Change=1

Change=0 Change=0

Change=0

30

FSM design

▪ Design steps for FSM:

1. Draw state diagram

2. Derive state table from state diagram

3. Assign flip-flop configuration to each state

4. Redraw state table with flip-flop values

5. Derive combinational circuit for output and for each flip-flop input.

31

Example: Sequence Recognizer

▪ Recognize a sequence of input values, and raise a signal if that
input has been seen.

▪ Example: Three high values in a row

 Detect that the input has been high for three rising clock edges.

 Assumes a single input X and a single output Z.

What are the states?

32

Step 1: State diagram

▪ In this case, the states are
labeled with the most recent
three input values.

▪ Transitions between states are
indicated by the values on the
transition arrows.

33

Step 2: State table

▪ Make sure that the state
table lists all the states in
the state diagram, and all
the possible inputs that
can occur at that state.

Previous

State
EN

Next

State

000 0 000

000 1 001

001 0 010

001 1 011

010 0 100

010 1 101

011 0 110

011 1 111

100 0 000

100 1 001

101 0 010

101 1 011

110 0 100

110 1 101

111 0 110

111 1 111
34

Step 3: Assign flip-flops

▪ Assign flip-flops for storing states.

▪ A single flip-flop can store two values (0 and 1),
and thus two states.

▪ How many states can be stored with each
additional flip-flop?
 One flip-flop → 2 states

 Two flip-flops → 4 states

 Three flip-flops → 8 states

 …

 Eight flip-flops? → 28 = 256 states

n states need: ceiling(log2n)
flip-flops

35

How many flip-flops for this one?

3

36

Step 3: Assign flip-flops

▪ In this case, we need to store 8 states.

 8 states = 3 flip-flops (3 = log2 8)

▪ For now, assign a flip-flop to each digit of the
state names in the FSM & state table.

D Q

Q

Combinational Circuit

D Q

Q

D Q

Q

Clk

EN

37

Step 4: State table

▪ Mapping states to
flip-flop values

▪ This is NOT the only
way of mapping from
state to flip flop
values, in fact it is not
even a good way, as
we will see later.

F2 F1 F0 EN F2 F1 F0

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 1 0

0 0 1 1 0 1 1

0 1 0 0 1 0 0

0 1 0 1 1 0 1

0 1 1 0 1 1 0

0 1 1 1 1 1 1

1 0 0 0 0 0 0

1 0 0 1 0 0 1

1 0 1 0 0 1 0

1 0 1 1 0 1 1

1 1 0 0 1 0 0

1 1 0 1 1 0 1

1 1 1 0 1 1 0

1 1 1 1 1 1 1

000

000

001

001

010

010

011

011

100

100

101

101

110

110

111

111

Prev. State

000

001

001

010

010

011

011

100

100

101

101

110

110

111

111

000

Next State

38

Step 4: State table

▪ Mapping states to
flip-flop values

▪ This is NOT the only
way of mapping from
state to flip flop
values, in fact it is not
even a good way, as
we will see later.

F2 F1 F0 EN F2 F1 F0

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 1 0

0 0 1 1 0 1 1

0 1 0 0 1 0 0

0 1 0 1 1 0 1

0 1 1 0 1 1 0

0 1 1 1 1 1 1

1 0 0 0 0 0 0

1 0 0 1 0 0 1

1 0 1 0 0 1 0

1 0 1 1 0 1 1

1 1 0 0 1 0 0

1 1 0 1 1 0 1

1 1 1 0 1 1 0

1 1 1 1 1 1 1

39

Step 5: Circuit design

▪ Karnaugh map for F2:

F0·EN F0·EN F0·EN F0·EN

F2·F1 0 0 0 0

F2·F1 1 1 1 1

F2·F1 1 1 1 1

F2·F1 0 0 0 0

F2 = F1

Next state Current state

40

Step 5: Circuit design

▪ Karnaugh map for F1:

F0·EN F0·EN F0·EN F0·EN

F2·F1 0 0 1 1

F2·F1 0 0 1 1

F2·F1 0 0 1 1

F2·F1 0 0 1 1

F1 = F0

Next state Current state

41

Step 5: Circuit design

▪ Karnaugh map for F0:

F0·EN F0·EN F0·EN F0·EN

F2·F1 0 1 1 0

F2·F1 0 1 1 0

F2·F1 0 1 1 0

F2·F1 0 1 1 0

F0 = EN

Next state Current state

42

Step 5: Circuit design
▪ Resulting circuit looks

like the diagram on the
right.

▪ This will record the
states and make the
state transitions happen
based on the input,

▪ What about the output
value Z which should go
high when we have three
highs in a row.

D Q

Q

D Q

Q

D Q

Q

F0

F1

F2

EN

Clk

F2 = F1 F1 = F0 F0 = EN

43

Step 5: Circuit design

▪ Boolean equation for Z:

Z = F0·F1·F2

D Q

Q

D Q

Q

D Q

Q

F0

F1

F2

EN

Clk

Z

44

Moore machine vs Mealy machine

▪ Two ways to derive the circuitry needed for the output
values of the state machine:

 Moore machine:

 The output for the FSM depends solely on the current state
(based on entry actions).

 Mealy machine:

 The output for the FSM depends on the state and the input
(based on input actions).

 Being in state X can result in different output, depending on the
input that caused that state.

45

An issue: timing and state assignments

▪ Example: if recognizer
circuit is in state 011 and
gets a 0 as an input, it
moves to state 110.
 The first and last digits

should change “at the same time”,
but they can’t.

 If the first flip-flop changes first, the state will
change to 111, and the output Z would go high for
an instant, which is unexpected behaviour.

 If the second flip-flop changes first, it’s fine since the
intermediate state 010 does NOT cause unexpected
behaviour.

010

46

An issue: timing and state assignments

▪ So how do you solve this?

▪ Two possible solutions:
1. Whenever possible, make flip-flop assignments such that

neighbouring states differ by at most one flip-flop value.
 Intermediate states can be allowed if the output generated by those

states is consistent with the output of the starting or destination
states.

2. If the intermediate states are unused in the state diagram, you
can set the output for these states to provide the output that you
need.

 Might need to add more flip-flops to create these states.

47

Previous

State
EN

Next

State

000 0 000

000 1 001

001 0 010

001 1 011

010 0 100

010 1 101

011 0 110

011 1 111

100 0 000

100 1 001

101 0 010

101 1 011

110 0 100

110 1 101

111 0 110

111 1 111

State 000 does not have to have
flip-flop values 000, it can be
anything you want to assign.

Home exercise: re-assign the states so the time issue doesn’t exist
48

After-class example: Mouse clicks

▪ Design a circuit that
takes in two signals:
 A signal P, which is

high if the user is
pressing the mouse
button,

 A signal M, which is
high if the mouse is being moved.

▪ Based on the inputs, indicate whether the user
is clicking, double-clicking, or dragging the
mouse on the screen.

49

▪ Transitions indicate the values of P&M.

▪ Outputs depend on the state (Moore machine)

▪ Home exercise: build the circuit for the mouse based on this FSM.

Neutral

Clicked

ReleasedDragging

Double

Clicked

11 00

10

10

00
11 01

00,01

11

10,11

10

10

01

00

50

01

Next week

processor architecture

51

CSCB58:
Computer Organization

Prof. Gennady Pekhimenko

University of Toronto

Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

