CSCB58:
Computer Organization

Prof. Gennady Pekhimenko

2 || " University of Toronto
I &= Fall 2020

00 M

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

CSCB58 Week 3

Quiz 1: Question 2 Clarification

Attempts: 97 out of 97

Adding impurities to the semiconductors causes (select all that apply.)

Instability in the semiconductor

It to be positively/negatively charged

It to have more mobile electrons/holes

Increase in resistance in the semiconductor

1
respondents
30
respondents

Bo
respondents

12
respondents

73 Yo

.
oo I
-

12 %

12% answered correctly

We are here

Logical Devices

Building up from gates...

e Some common and more complex structures:
* Multiplexers (MUX)

Adders (half and full)

Subtractors

Decoders
e Seven-segment decoders

Comparators

Multiplexers

Multiplexer / Demultiplexer

fast line

Multiplexer / Demultiplexer

Logical devices

 Certain structures are common to many circuits, and have block
elements of their own.
* e.g. Multiplexers (short form: mux)
* Behaviour: Outputis X if Sis0,and Yif Sis 1, i.e., S selects which input

can go through

Multiplexer design

OOOEE EEEETIETIEGE
NN - T o
B - -G

R B PP O O O O
H P O O B B O
H O B O B O K

0
0
1
1
0
1
1

= SRS

Multiplexer uses

* Muxes are very useful whenever you need
to select from multiple input values.
* Example:
e Surveillance video monitors,
* Digital cable boxes,
* routers.

MPV-116A

10

Demultiplexers

* Does multiplexer operation, in reverse.

11

Mux + Demux

Mux

Canversation A

-
Conversation C —p—e

Demux

Conversation D —pe—=

canversation E

T

F
(]
_

Conversation A

12

Adder circuits

Adders

* Also known as binary adders.
* Small circuit devices that add two 1-bit number.

 Combined together to create iterative combinational
circuits —add multiple-bit numbers

* Types of adders:
* Half adders (HA)
e Full adders (FA)
* Ripple Carry Adder
e Carry-Look-Ahead Adder (CLA)

14

Review of Binary Math

Review of Binary Math

* Each digit of a decimal number represents a power of 10:

258 = 2x10% + 5x10! + 8x10¢

* Each digit of a binary number represents a power of 2:

Ox24% + 1x23 + 1x2? + 0x2t + 1x2°0

16

Unsigned binary addition

+ 27 +53 + 95 + 181
27=00011011 01011111
53=00110101 +10110101

Carrymt.kltlll lltlll

00011011 01011111

+00110101 crybit +10110101

01010000 \-[160010100
¥ ¥

01010000 00010100

17

Half Adder

Input: two 1-bit numbers
Output: 1-bit sum and 1-bit carry

Half Adders

* A 2-input, 1-bit width binary adder that performs
the following computations:

X 0 0 1 1 C =X?Y
+Y +0 +1 +0 +1 S:X?Y
CS 00 01 01 10

X Y

* A half adder adds two bits
to produce a two-bit sum.
* The sum is expressed as a .

sum bit S and a carry bit C.

S

Half Adder Implementation

e Equations and circuits for half adder units are easy
to define (even without Karnaugh maps)

(_ _)
C = XY S XY + XY
X XOor Y

20

A half adder outputs a carry-bit,
but does not take a carry-bit as input.

21

Full Adder

takes a carry bit as input

22

X Y

Full Adders

o , , C FA 7
* Similar to half-adders, but with another input -
7., which represents a carry-in bit.

* Cand Z are sometimes labeledas C__ . and C. . S

out

* When Z is 0, the unit behaves exactly like...
* a half adder.

e When Zis 1:
X 0 0 1 1
+Y +0 +1 40 +1
+7 +1 +1 41 +1

CS 01 10 10 11

Full Adder Design
x|y]z| c| s

0 0 1 0

0 0 0
o o afo 1 N
01001n01-1
o 1 1| 1 o0
ool EEEEAETAKTEEEE
1 0 1| 1 o0

B & o
1 1 o 1 o0
v 2 EEE o @ o
C=X'Y + X2 + Y-Z S = X xor Y Xor %

For gate reuse (X xor Y)

C = XY + (X xor Y) *Z
considering both Cand S

S = X xor Y XOr %7

Full Adder Design

e The C term can also be rewritten as: XY

G
C = XY + (X xor Y) 7 _Gﬂ

e Two terms come from this:

e X Y =carry generate (G). y
 Whether X and Y generate a carry bit

e X XOor Y =carry propagate (P).
 Whether carry will be propagated to Cout

e Results in this circuit =2 out S

Now we can add one bit properly, but most of the
numbers we use have more than one bits.

* int, unsigned int: 32 bits (architecture-dependent)
* short int, unsigned short int: 16 bits

* long long int, unsigned long long int: 64 bit

 char, unsigned char: 8 bits

How do we add multiple-bit numbers?

26

Each full adder takes in a carry bit and
outputs a carry bit.

Each full adder can take in a carry bit
which is output by another full adder.

That is, they can be chained up.

Ripple-Carry Binary Adder

Full adders chained up,
for multiple-bit addition

Ripple-Carry Binary Adder

* Full adder units are chained together in order to perform operations
on signal vectors.

S55,5,S, isthe sum of X, X, XX, and Y, Y, Y,Y,

30

The role of C,_

* Why can’t we just have a half-adder for the smallest (right-most) bit?

- Because if we can use it to do SUbtraction:

31

Let’s play a game...

Pick two numbers between 0 and 31
Convert both numbers to 5-bit binary form
Invert each digit of the smaller number

Add up the big binary number and the inverted small binary
number

Add 1 to the result, keep the lowest 5 digits
6. Convert the result to a decimal number

W

1

? . . .
What do you get: You just did subtraction

without doing subtraction!

32

Subtractors

e Subtractors are an extension of adders.
* Basically, perform addition on a negative number.

e Before we can do subtraction, need to understand negative binary
numbers.

* Two types:

* Unsigned = a separate bit exists for the sign; data bits store the positive
version of the number.

* Signed = all bits are used to store a 2’s complement negative number.

Two’s complement

* Need to know how to get 1’s complement:
* Given number X with n bits, take (27°-1) —-X
* Negates each individual bit (bitwise NOT).

01001101 - 10110010
11111111 - 00000000

'\
* 2’s complement = (1’s complement + 1)
Know
01001101 > 10110011 > thicl
11111111 > 00000001 '
y

* Note: Adding a 2’s complement number to the original number
produces a result of zero.

(2’s complement of A) + A = 0.

The 2’s complement of A is like -A

Unsigned subtraction (separate sign bit)

* General algorithm for A - B:

1.
2.
3.

Get the 2’s complement of B (-B)
Add that value to A

If there is an end carry (C_ , is high), the final result
is positive and does not change.

If there is no end carry (C_,. is low), get the 2’s
complement of the result (B-A) and add a negative
sign to it, or set the sign bit high (-(B-A) = A-B).

Unsigned subtraction example
e 53-27

00110101
-00011011

$

00110101

Carrybit -I':I_:I_:I_OO:I_O]_

'\00011010
¥

carry bit is high 00011010

(positive)

26

*2/-53

00011011
-00110101

$

00011011

no carry bit +11001011

v

carry bit is

low (negative)

'\@11100110

‘2’5 complement

-00011010
-26

Signed subtraction (easier)

* Store negative numbers in 2’s complement
notation.

e Subtraction can then be performed by using the binary
adder circuit with negative numbers.

* To compute A—B, just do A + (-B)

* Need to get -B first (the 2’s complement of B)

38

Signed subtraction example (6-bit)
°21—-23

e 23is 010111

e« 21is 010101

e -23is 101001 (2’s complement of 32)
e 21-23is 111110 which is -2

39

Signed addition example (6-bit)
21+ 23

e 23is 010111

e 21is 010101

e 23+21: 101100
* This is -20!

* The supposed result 44 is exceeding the range of 6-bit signed
integers. This is called an overflow.

Now you understand C code better

#include <stdio.h>

int main()

{
/* char is 8-bit integer */
signed char a = 100;
signed char b = 120;
signed chars=a+ b;

printf("%d\n", s);

Trivia about sign numbers

The largest positive 8-bit signed integer?

e 01111111=127 (O followed by all 1)

The smallest negative 8-bit signed integer?

e 10000000 =-128 (1 followed by all O)

The binary form 8-bit signed integer -17?

e 11111111 (allone)

For n-bit signed number there are 2" possible values
o 2™l are negative numbers (e.g. 8 bit, -1 to -128)
o 2™1.1 are positive number (e.g. 8 bit, 1 to 127)

* andazero

-128: 10000000 (signed)

43

Subtraction circuit

Invert all the
digits (if sub =1)

Add 1, so
getting 2’s
complement

e Ifsub=0,S=X+Y
e Ifsub=1,S=X-Y
One circuit, both adder or subtractor

44

Decoders

What is a decoder?

“number 1”
“number 2”
“number 3”

“number 10”

III

“rock

III

“good job

5-bit input, encoded

original information The original information

Decoders

* Decoders are essentially translators.
* Translate from the output of one circuit to the input of
another.
 Example: Binary signal splitter

* Activates one of four output lines, based on a two-digit
binary number.

o Q W »

Demultiplexers

* Related to decoders: demultiplexers.
* Does multiplexer operation, in reverse.

48

Multiplexer:
Choose one from multiple inputs as output

Demultiplexer:
One input chooses from multiple outputs

49

7-segment decoder

 Common and useful decoder application.

* Translate from a 4-digit binary number to the
seven segments of a digital display.

* Each output segment has a particular
logic that defines it.

 Example: Segment O

e Activate for values: 0, 2, 3,5, 6, 7, 8, 9.

* In binary: 0000,0010,0011,0101,0110, 0111,
1000,1001.

* First step: Build the truth table and K-map.

on
o)
AE—
=

(18
N

50

Note

What we talk about here is NOT the same as what we do in Lab 2

* In labs we translate numbers O, 1, 3, 4, 5, 6 to displayed letters such as
(H) E) I—r L) O; — E) L) I)

* This is specially defined for the lab

 Here we are talking about translating O, 1, 2, 3, 4,..., to displayed O, 1, 2,
3,4, ..

* This is more common use

|o

7-segment decoder

S 6}
\ 4
wl:lm
AN
N =

* For 7-seg decoders, turning a segment on involves
driving it low. (active low)

* (InLab 2, we treat it like active high. It’s OK because Logisim does auto-
conversion to make it work).

* i.e. Assuming a 4-digit binary number, segment 0 is low
whenever input numberis 0000, 0010, 0011, 0101, 0110,

0111,10000r 1001, and high whenever input number is
0001 or0100.

* This create a truth table and map like the following...

7-segment decoder
% voo
0O 0 O

0 1 0 0

g s)

0 0 0 1 1

1 0 0 0
0 0 1 0 0
o0 0 1 1 0 X X X X
0 1 0 0 1 0 0 X X
0 1 0 1 0

- - - 0
i R = HEXO0 =X, X, X, ‘X, w—
0 1 1 1 0 n X3'X2'X1'XO 5 1
1 0 0 0 0 . 6
T e R = But what about input

values from 1010 to

6 rows missing! 11117
1010 ~ 1111 53

1N
N

“Don’t care” values

* Some input values will never happen, so their
output values do not have to be defined.

* Recorded as ‘X’ in the Karnaugh map.

* These values can be assighed to whatever values
you want, when constructing the final circuit.

HEXO0 =X, ‘X, ‘X, X,
+ X, ‘X, ‘X,

EREEAEAPTA RN
0 1 0 0

§3 'iz
X; X, 1 0 0 0

X, X, [X X X

X; X, 0 0 X X

o 77

Boxes can cover “x”’s, or not,
whichever you like. 54

|o

(8]
\ 4
N

Again for segment 1
4
0 0

0 3
BRI IR EES
0 0 0 0

X, ‘X,

2

X, ‘X, 0 1 0 1
X, X, X X X X

X5 X, 0 0 X X

P P O O O O O o o o
o o B B B B O O O
o o B B O O = B O
b o B OO B O B O =B O
o o O B B O O O O

HEX1 =X, ‘X, ‘X, +

X, ‘X, X,

Again for segment 2
X; | X, | X, | Xy HEX,

i3 'iz
X, ‘X,

X, X,

X, X,

R P O O O O O O o
o o B B B B O O O
o o B B O O = B O
b o B OO B O B O =B O
o O O O O o o B+ o o

|o

(8]
\ 4
P\

4 2

3
EREEAEAETA RN
0 0 0 1

0 0 0 0
X X X X
0 0 X X

HEX2 =X, ‘X, ‘X,

56

The final 7-seg decoder

* Decoders all look the same, except
for the inputs and outputs.

* Unlike other devices, the
implementation differs from
decoder to decoder.

.
3
©
O
O
Q
©
a0
Q
P
I~

HEX6
HEX5
HEX4

HEX3
HEX?2
HEX1

HEXO

Comparators

58

Comparators

A circuit that takes in two
input vectors, and
determines if the first is
greater than, less than or
equal to the second.

e How does one make that
in a circuit?

59

Basic Comparators

* Consider two binary numbers

A and B, where A and B are one bit long.

* The circuits for this would be:

* A==B: A'B + A'B
e A>B: —

A B
e A<B:

A B

A

B

A=B
A>B
A<B

0
0
1
1

0
1
0
1

60

Basic Comparators AA, BB,

 What if A and B are two bits long?

* The terms for this circuit for have to
expand to reflect the second signal.

Comparator

A>B
* For example: A<B

[(Al ‘B, +A, -_Bl)} -[(AO ‘B,+A, -_BO)]

Make sure that the values | | Make sure that the values

of bit 1 are the same of bit O are the same

61

. A.A, B.B
Basic Comparators T

Comparator

 What about checking if A is greater
than B?

A>B
A<B

v
e A<B:

* A>B: [Al -51} + [(Al ‘B, +A, -_Bl)} -[(AO -EO)}
A Bl] + [(Al ‘B, +A, -_Bl)} -[(KO 'BO)}

Check if first bit If not, check that the ...and then do the
satisfies condition first bits are equal... 1-bit comparison
B

A > B if and only if A1 > B1 or (A1 = B1 and AO > BO)

62

General Comparators

* The general circuit for comparators requires you to define
equations for each case.

e Case #1: Equality
* If inputs A and B are equal, then all bits must be the same.
* Define X. for any digit 1i:

* (equality for digit i)

X, = A,-B. + A, ‘B,

1 1 1

* Equality between A and B is defined as:

A==B : X, X, ..'X

Comparators

e Case##2: A > B

* The first non-matching bits occur at bit 1, where A. =1
and B.=0. All higher bits match.

* Using the definition for X, from before:

A>B = A ‘B + X -A

n n n n-1

e Case##3: A < B

* The first non-matching bits occur at bit i, where A.=0
and B.=1. Again, all higher bits match.

A<B = A B+ X_ ‘A

n n n n-1

— n
+ .+ BgByoIl X,

Comparator truth table

A< B A=BA>B

B,

= Given two input

vectors of size n=2,

output of circuit is
shown at right

Comparator example (cont’d)

a<e: EEEICEIEENEES
=

Comparator example (cont’d)

a-e: IS
A, A 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+ +
ol oI
(@)
e SRS
R

=

@)

||
o OWI
w HU.J|
>
>

H
(@)

o Wl
-

Y

[
(@)

Comparator example (cont’d)

S e
OOOO
1oo
o
110

olH\o

Comparing larger numbers

* As numbers get larger, the comparator circuit
gets more complex.

e At a certain level,
it can be easier
sometimes to just
process the result
of a subtraction
operation instead.

 Easier, less circuitry,
just not faster.

>

P

L
e ..

B

Eo
D,

-

o>
SD_

e

L

Today we learned

How a computer does following things

e Control the flow of signal (mux and demux)
* Arithmetic operations: adder, subtractor

* Decoder

* Comparators

Next week:
e Sequential circuits: circuits that have memories.

CSCB58:
Computer Organization

Prof. Gennady Pekhimenko

2 || " University of Toronto
I &= Fall 2020

00 M

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

