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Quiz 1: Question 2 Clarification
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We are here

Assembly Language

Processors

Finite State 
Machines

Arithmetic 
Logic Units

Devices Flip-flops

Circuits

Gates

Transistors
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Logical Devices
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Building up from gates…

• Some common and more complex structures:
• Multiplexers (MUX)

• Adders (half and full)

• Subtractors

• Decoders
• Seven-segment decoders

• Comparators 
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Multiplexers
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Logical devices

• Certain structures are common to many circuits, and have block 
elements of their own.
• e.g. Multiplexers (short form: mux)

• Behaviour: Output is X if S is 0, and Y if S is 1, i.e., S selects which input 
can go through
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Multiplexer design

Y·S Y·S Y·S Y·S

X 0 0 1 0

X 1 0 1 1

M = Y·S + X·S

X Y S M

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1
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Multiplexer uses

• Muxes are very useful whenever you need 
to select from multiple input values.
• Example:

• Surveillance video monitors, 

• Digital cable boxes, 

• routers.
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Demultiplexers

• Does multiplexer operation, in reverse.
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Mux + Demux
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Adder circuits
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Adders
• Also known as binary adders.

• Small circuit devices that add two 1-bit number.

• Combined together to create iterative combinational 
circuits – add multiple-bit numbers

• Types of adders:
• Half adders (HA)

• Full adders (FA)

• Ripple Carry Adder

• Carry-Look-Ahead Adder (CLA)
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Review of Binary Math
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Review of Binary Math

• Each digit of a decimal number represents a power of 10:

• Each digit of a binary number represents a power of 2:

258 = 2x102 + 5x101 + 8x100

011012 = 0x24 + 1x23 + 1x22 + 0x21 + 1x20

= 1310
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Unsigned binary addition
• 27 + 53

27 = 00011011

53 = 00110101

00011011

+00110101

01010000

• 95 + 181

01011111

+10110101

01011111

+10110101

100010100

01010000 00010100

carry bit

1 1 1 1 1 1 1 1 1 1 1 11

Carry bit
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Half Adder

Input: two 1-bit numbers
Output: 1-bit sum and 1-bit carry
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Half Adders
• A 2-input, 1-bit width binary adder that performs 

the following computations:

• A half adder adds two bits 
to produce a two-bit sum.

• The sum is expressed as a 
sum bit  S and a carry bit C.

X 0 0 1 1

+Y +0 +1 +0 +1

CS 00 01 01 10

HA

X Y

C

S

C = X?Y
S = X?Y
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Half Adder Implementation
• Equations and circuits for half adder units are easy 

to define (even without Karnaugh maps)

C = X·Y S = X·Y + X·Y

= X xor Y

HA

X Y

C

S

X

Y

S

C
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A half adder outputs a carry-bit, 
but does not take a carry-bit as input.
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Full Adder
takes a carry bit as input

HA

X Y

C

S

FA

X Y

C

S

Z
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Full Adders

• Similar to half-adders, but with another input 
Z, which represents a carry-in bit.
• C and Z are sometimes labeled as Cout and Cin.

• When Z is 0, the unit behaves exactly like…
• a half adder.

• When Z is 1:

FA

X Y

C

S

Z

X 0 0 1   1

+Y +0 +1 +0  +1

+Z +1 +1 +1  +1

CS 01 10 10  11
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Full Adder Design
X Y Z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

C Y·Z Y·Z Y·Z Y·Z

X 0 0 1 0

X 0 1 1 1

S = X xor Y xor ZC = X·Y + X·Z + Y·Z

S Y·Z Y·Z Y·Z Y·Z

X 0 1 0 1

X 1 0 1 0

C = X·Y + (X xor Y)·Z
For gate reuse(X xor Y)

considering both C and S 24



Full Adder Design

• The C term can also be rewritten as:

• Two terms come from this:
• X·Y = carry generate (G).

• Whether X and Y generate a carry bit

• X xor Y = carry propagate (P).
• Whether carry will be propagated to Cout

• Results in this circuit → Cout

Z

YX

G

P

S

C = X·Y + (X xor Y)·Z

S = X xor Y xor Z

25



Now we can add one bit properly, but most of the 
numbers we use have more than one bits.

• int, unsigned int: 32 bits (architecture-dependent)

• short int, unsigned short int: 16 bits

• long long int, unsigned long long int: 64 bit

• char, unsigned char: 8 bits

How do we add multiple-bit numbers?
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HA

X Y

C

S

FA

X Y

C

S

Z
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Each full adder takes in a carry bit and 
outputs a carry bit.

Each full adder can take in a carry bit 
which is output by another full adder.

That is, they can be chained up.
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Ripple-Carry Binary Adder
Full adders chained up, 
for multiple-bit addition
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Ripple-Carry Binary Adder

• Full adder units are chained together in order to perform operations 
on signal vectors.

Adder

X Y

Cout

S

Cin

4 4

4

Cin
FA

X0Y0

S0

FA

X1Y1

S1

C1
FA

X2Y2

S2

C2
FA

X3Y3

S3

C3Cout

S3S2S1S0 is the sum of X3X2X1X0 and Y3Y2Y1Y0
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The role of Cin

• Why can’t we just have a half-adder for the smallest (right-most) bit?

• Because if we can use it to do subtraction!

Cin
FA

X0Y0

S0

FA

X1Y1

S1

C1
FA

X2Y2

S2

C2
FA

X3Y3

S3

C3Cout
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Let’s play a game…

1. Pick two numbers between 0 and 31

2. Convert both numbers to 5-bit binary form

3. Invert each digit of the smaller number

4. Add up the big binary number and the inverted small binary 
number

5. Add 1 to the result, keep the lowest 5 digits

6. Convert the result to a decimal number

What do you get? You just did subtraction 
without doing subtraction!
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Subtractors

• Subtractors are an extension of adders.
• Basically, perform addition on a negative number.

• Before we can do subtraction, need to understand negative binary 
numbers.

• Two types:
• Unsigned = a separate bit exists for the sign; data bits store the positive 

version of the number.

• Signed = all bits are used to store a 2’s complement negative number.
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Two’s complement

• Need to know how to get 1’s complement:
• Given number X with n bits, take (2n-1)-X
• Negates each individual bit  (bitwise NOT).

• 2’s complement = (1’s complement + 1)

• Note: Adding a 2’s complement number to the original number 
produces a result of zero.

01001101   → 10110010

11111111   → 00000000

01001101   → 10110011

11111111   → 00000001

Know 
this!
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(2’s complement of A)  +  A  =  0.

The 2’s complement of A is like -A
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Unsigned subtraction (separate sign bit)

•General algorithm for A - B:
1. Get the 2’s complement of B   (-B)

2. Add that value to A

3. If there is an end carry (Cout is high), the final result
is positive and does not change.

4. If there is no end carry (Cout is low), get the 2’s 
complement of the result (B-A) and add a negative 
sign to it, or set the sign bit high  (-(B-A) = A-B).
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Unsigned subtraction example
• 53 – 27

00110101

-00011011

00110101

+11100101

100011010

• 27 – 53

00011011

-00110101

00011011

+11001011

011100110

00011010 -00011010

carry bit no carry bit

carry bit is high 
(positive)

carry bit is 
low (negative)

26 -26 37

2’s complement



Signed subtraction (easier)

• Store negative numbers in 2’s complement 
notation.

• Subtraction can then be performed by using the binary 
adder circuit with negative numbers.

• To compute A – B, just do A + (-B)

• Need to get -B first (the 2’s complement of B)
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Signed subtraction example (6-bit)

•21 – 23

• 23 is   010111

• 21 is   010101

• -23 is   101001 (2’s complement of 32)

• 21-23 is 111110 which is -2
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Signed addition example (6-bit)

•21 + 23

• 23 is  010111

• 21 is  010101

• 23+21: 101100

• This is -20!

• The supposed result 44 is exceeding the range of 6-bit signed 
integers. This is called an overflow.
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Now you understand C code better

41

#include <stdio.h>

int main()

{

/* char is 8-bit integer */

signed char a = 100;

signed char b = 120;

signed char s = a + b;

printf("%d\n", s);

}



Trivia about sign numbers

• The largest positive 8-bit signed integer?

• 01111111 = 127     (0 followed by all 1)

• The smallest negative 8-bit signed integer?

• 10000000 = -128    (1 followed by all 0)

• The binary form 8-bit signed integer -1?

• 11111111 (all one)

• For n-bit signed number there are 2n possible values

• 2n-1 are negative numbers  (e.g. 8 bit, -1 to -128)

• 2n-1-1 are positive number   (e.g. 8 bit, 1 to 127)

• and a zero
42



-128: 10000000 (signed)

43



Subtraction circuit

• If sub = 0, S = X + Y

• If sub = 1, S = X – Y

One circuit, both adder or subtractor

Cin
FA

X0

Y0

S0

FA

X1

Y1

S1

C1
FA

X2

Y2

S2

C2
FA

X3

Y3

S3

C3Cout

Sub

Invert all the 
digits (if sub = 1)

Add 1, so 
getting 2’s 

complement
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Decoders
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What is a decoder?

D
ec

o
d

er
5-bit input, encoded 
original information

“number 2”

“number 1”

“number 3”

…

“number 10”

“rock!”

“…..”

The original information

…

“good job!”
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Decoders
• Decoders are essentially translators.

• Translate from the output of one circuit to the input of 
another.

• Example: Binary signal splitter
• Activates one of four output lines, based on a two-digit 

binary number.

D
ec

o
d

erX1

X0

A

B

C

D
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Demultiplexers

• Related to decoders: demultiplexers.
• Does multiplexer operation, in reverse.
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Demultiplexer:
One input chooses from multiple outputs

Multiplexer:
Choose one from multiple inputs as output
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7-segment decoder

• Common and useful decoder application.
• Translate from a 4-digit binary number to the 

seven segments of a digital display.

• Each output segment has a particular
logic that defines it.

• Example: Segment 0
• Activate for values: 0, 2, 3, 5, 6, 7, 8, 9.

• In binary: 0000, 0010, 0011, 0101, 0110, 0111, 
1000, 1001.

• First step: Build the truth table and K-map.

0

1

2

3

4

5
6
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Note
What we talk about here is NOT the same as what we do in Lab 2

• In labs we translate numbers 0, 1, 3, 4, 5, 6 to displayed letters such as 
(H, E, L, L, O, _, E, L, I)

• This is specially defined for the lab

• Here we are talking about translating 0, 1, 2, 3, 4,…, to displayed 0, 1, 2, 
3, 4, ...

• This is more common use

51



7-segment decoder

• For  7-seg decoders, turning a segment on involves 
driving it low. (active low)

• (In Lab 2, we treat it like active high. It’s OK because Logisim does auto-
conversion to make it work).

• i.e. Assuming a 4-digit binary number, segment 0 is low 
whenever input number is 0000, 0010, 0011, 0101, 0110, 
0111, 1000 or 1001, and high whenever input number is 
0001 or 0100.

• This create a truth table and map like the following…

0

1

2

3

4

5
6
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7-segment decoder
X3 X2 X1 X0 HEX0

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

0

1

2

3

4

5
6

X1·X0 X1·X0 X1·X0 X1·X0

X3·X2 0 1 0 0

X3·X2 1 0 0 0

X3·X2 X X X X

X3·X2 0 0 X X

▪ HEX0 = X3·X2·X1·X0
+ X3·X2·X1·X0

▪ But what about input 
values from 1010 to  
1111?6 rows missing!

1010 ~ 1111 53



“Don’t care” values
• Some input values will never happen, so their 

output values do not have to be defined.
• Recorded as ‘X’ in the Karnaugh map.

• These values can be assigned to whatever values 
you want, when constructing the final circuit.

X1·X0 X1·X0 X1·X0 X1·X0

X3·X2 0 1 0 0

X3·X2 1 0 0 0

X3·X2 X X X X

X3·X2 0 0 X X

HEX0 = X3·X2·X1·X0
+ X2·X1·X0

Boxes can cover “x”’s, or not, 
whichever you like. 54



Again for segment 1
X3 X2 X1 X0 HEX1

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

0

1

2

3

4

5
6

X1·X0 X1·X0 X1·X0 X1·X0

X3·X2 0 0 0 0

X3·X2 0 1 0 1

X3·X2 X X X X

X3·X2 0 0 X X

HEX1 = X2·X1·X0 + 

X2·X1·X0
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Again for segment 2
X3 X2 X1 X0 HEX2

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

X1·X0 X1·X0 X1·X0 X1·X0

X3·X2 0 0 0 1

X3·X2 0 0 0 0

X3·X2 X X X X

X3·X2 0 0 X X

HEX2 = X2·X1·X0

0

1

2

3

4

5
6
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The final 7-seg decoder

• Decoders all look the same, except 
for the inputs and outputs.

• Unlike other devices, the 
implementation differs from 
decoder to decoder. 7

-s
eg

 d
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HEX6
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X1
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Comparators
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Comparators

• A circuit that takes in two 
input vectors, and 
determines if the first is 
greater than, less than or 
equal to the second.

• How does one make that 
in a circuit?
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Basic Comparators

• Consider two binary numbers 
A and B, where A and B are one bit long.

• The circuits for this would be:

• A==B:

• A>B:

• A<B:

A·B + A·B

A·B

A·B

A B

Comparator
A=B
A>B
A<B

A B

0 0

0 1

1 0

1 1
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Basic Comparators

• What if A and B are two bits long?

• The terms for this circuit for have to
expand to reflect the second signal.

• For example:

• A==B:

A1 B1

Comparator

A0 B0

A=B

A>B

A<B

(A1·B1+A1·B1)·(A0·B0+A0·B0)

Make sure that the values 
of bit 1 are the same

Make sure that the  values 
of bit 0 are the same
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Basic Comparators

• What about checking if A is greater or less 
than B?

• A>B:

• A<B:

A1 B1

Comparator

A0 B0

A=B

A>B

A<B

A1·B1 + (A1·B1+A1·B1)·(A0·B0)

A1·B1 + (A1·B1+A1·B1)·(A0·B0)

Check if first bit 
satisfies condition

…and then do the 
1-bit comparison

If not, check that the 
first bits are equal…

A > B if and only if A1 > B1 or (A1 = B1 and A0 > B0)
62



General Comparators
• The general circuit for comparators requires you to define 

equations for each case.

• Case #1: Equality
• If inputs A and B are equal, then all bits must be the same.

• Define Xi for any digit i:
• (equality for digit i)

• Equality between A and B is defined as:

A==B : X0·X1·…·Xn

Xi = Ai·Bi + Ai·Bi



Comparators
• Case #2: A > B

• The first non-matching bits occur at bit i, where Ai=1
and Bi=0. All higher bits match.

• Using the definition for Xi from before:

• Case #3: A < B

• The first non-matching bits occur at bit i, where Ai=0
and Bi=1. Again, all higher bits match.

A>B = An·Bn + Xn·An-1·Bn-1 + … + A0·B0·Π Xk
k=1

n

A<B = An·Bn + Xn·An-1·Bn-1 + … + A0·B0·Π Xk
k=1

n



Comparator truth table
Inputs Outputs

A1 A0 B1 B0 A < B A = B A > B

0 0 0 0 0 1 0

0 0 0 1 1 0 0

0 0 1 0 1 0 0

0 0 1 1 1 0 0

0 1 0 0 0 0 1

0 1 0 1 0 1 0

0 1 1 0 1 0 0

0 1 1 1 1 0 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 0 1 0

1 0 1 1 1 0 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 0 1 0

▪ Given two input 
vectors of size n=2, 
output of circuit is 
shown at right.



Comparator example (cont’d)

B0·B1 B0·B1 B0·B1 B0·B1

A0·A1 0 1 1 1

A0·A1 0 0 1 1

A0·A1 0 0 0 0

A0·A1 0 0 1 0

A<B:

LT = B1·A1 + B0·B1·A0  + B0·A0·A1



Comparator example (cont’d)

B0·B1 B0·B1 B0·B1 B0·B1

A0·A1 1 0 0 0

A0·A1 0 1 0 0

A0·A1 0 0 1 0

A0·A1 0 0 0 1

A=B:

EQ = B0·B1·A0·A1 + B0·B1·A0·A1 + 

B0·B1·A0·A1 + B0·B1·A0·A1



Comparator example (cont’d)

B0·B1 B0·B1 B0·B1 B0·B1

A0·A1 0 0 0 0

A0·A1 1 0 0 0

A0·A1 1 1 0 1

A0·A1 1 1 0 0

A>B:

GT = B1·A1 + B0·B1·A0  + B0·A0·A1



Comparing larger numbers

• As numbers get larger, the comparator circuit 
gets more complex. 

• At a certain level, 
it can be easier 
sometimes to just 
process the result
of a subtraction
operation instead.
• Easier, less circuitry,

just not faster.



Today we learned

How a computer does following things

• Control the flow of signal (mux and demux)

• Arithmetic operations: adder, subtractor

• Decoder

• Comparators

Next week:
• Sequential circuits: circuits that have memories.
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