CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto
Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

CSCB58 Week 3

Quiz 1: Question 2 Clarification

Attempts: 97 out of 97

Adding impurities to the semiconductors causes (select all that apply.)

We are here

Logical Devices

Building up from gates...

- Some common and more complex structures:
- Multiplexers (MUX)
- Adders (half and full)
- Subtractors
- Decoders
- Seven-segment decoders
- Comparators

Multiplexers

Logical devices

- Certain structures are common to many circuits, and have block elements of their own.
- e.g. Multiplexers (short form: mux)
- Behaviour: Output is X if S is 0 , and Y if S is 1, i.e., S selects which input can go through

Multiplexer design

\mathbf{X}	\mathbf{Y}	\mathbf{S}	\mathbf{M}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

	$\overline{\mathbf{Y}} \cdot \overline{\mathbf{S}}$	$\overline{\mathbf{Y}} \cdot \mathbf{S}$	$\mathbf{Y} \cdot \mathbf{S}$	$\mathbf{Y} \cdot \overline{\mathbf{S}}$
$\overline{\mathbf{X}}$	0	0	1	0
\mathbf{X}	1	0	1	1

$$
M=Y \cdot S+X \cdot \bar{S}
$$

Multiplexer uses

- Muxes are very useful whenever you need to select from multiple input values.
- Example:
- Surveillance video monitors,
- Digital cable boxes,
- routers.

MPV-116A
WbN-JNE

Demultiplexers

- Does multiplexer operation, in reverse.

Mux + Demux

Adder circuits

Adders

- Also known as binary adders.
- Small circuit devices that add two 1-bit number.
- Combined together to create iterative combinational circuits - add multiple-bit numbers
- Types of adders:
- Half adders (HA)
- Full adders (FA)
- Ripple Carry Adder
- Carry-Look-Ahead Adder (CLA)

Review of Binary Math

Review of Binary Math

- Each digit of a decimal number represents a power of 10:

$$
258=2 \times 10^{2}+5 \times 10^{1}+8 \times 10^{0}
$$

- Each digit of a binary number represents a power of 2 :

$$
\begin{aligned}
01101_{2} & =0 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0} \\
& =13_{10}
\end{aligned}
$$

Unsigned binary addition

- $27+53$
$27=00011011$
$53=00110101$

$00_{0}^{1} 0_{1}^{1} 11_{1}^{1} 11$
$\begin{array}{r}+00110101 \\ \hline 01010000\end{array}$

- $95+181$

Half Adder

Input: two 1-bit numbers
Output: 1-bit sum and 1-bit carry

Half Adders

- A 2-input, 1-bit width binary adder that performs the following computations:

- A half adder adds two bits to produce a two-bit sum.
- The sum is expressed as a sum bit S and a carry bit C .

Half Adder Implementation

- Equations and circuits for half adder units are easy to define (even without Karnaugh maps)

$$
\begin{aligned}
C=X \cdot Y \quad S & =X \cdot \bar{Y}+\bar{X} \cdot Y \\
& =X \text { xor } Y
\end{aligned}
$$

A half adder outputs a carry-bit, but does not take a carry-bit as input.

Full Adder

takes a carry bit as input

Full Adders

- Similar to half-adders, but with another input Z, which represents a carry-in bit.
- C and Z are sometimes labeled as $C_{\text {out }}$ and $C_{i n}$.

- When Z is 0 , the unit behaves exactly like...
- a half adder.
- When Z is 1 :

Full Adder Design

Full Adder Design

- The C term can also be rewritten as:

$$
C=X \cdot Y+(X \text { xor } Y) \cdot Z
$$

- Two terms come from this:
- $\mathrm{X} \cdot \mathrm{Y}=$ carry generate (G).
- Whether X and Y generate a carry bit
- X XOr $Y=$ carry propagate (P).
- Whether carry will be propagated to Cout
- Results in this circuit \rightarrow

Now we can add one bit properly, but most of the numbers we use have more than one bits.

- int, unsigned int: 32 bits (architecture-dependent)
- short int, unsigned short int: 16 bits
- long long int, unsigned long long int: 64 bit
- char, unsigned char: 8 bits

How do we add multiple-bit numbers?

Each full adder takes in a carry bit and outputs a carry bit.

Each full adder can take in a carry bit which is output by another full adder.

That is, they can be chained up.

Ripple-Carry Binary Adder

Full adders chained up, for multiple-bit addition

Ripple-Carry Binary Adder

- Full adder units are chained together in order to perform operations on signal vectors.

$S_{3} S_{2} S_{1} S_{0}$ is the sum of $X_{3} X_{2} X_{1} X_{0}$ and $Y_{3} Y_{2} Y_{1} Y_{0}$

The role of $\mathrm{C}_{\text {in }}$

- Why can't we just have a half-adder for the smallest (right-most) bit?
- Because if we can use it to do Subtraction!

Let's play a game...

1. Pick two numbers between 0 and 31
2. Convert both numbers to 5 -bit binary form
3. Invert each digit of the smaller number
4. Add up the big binary number and the inverted small binary number
5. Add 1 to the result, keep the lowest 5 digits
6. Convert the result to a decimal number

What do you get?

Subtractors

- Subtractors are an extension of adders.
- Basically, perform addition on a negative number.
- Before we can do subtraction, need to understand negative binary numbers.
- Two types:
- Unsigned = a separate bit exists for the sign; data bits store the positive version of the number.
- Signed = all bits are used to store a 2's complement negative number.

Two's complement

- Need to know how to get 1's complement:
- Given number X with n bits, take $\left(2^{\mathrm{n}}-1\right)-\mathrm{X}$
- Negates each individual bit (bitwise NOT).

$$
\begin{array}{lll}
01001101 & \rightarrow & 10110010 \\
11111111 & \rightarrow & 00000000
\end{array}
$$

- 2's complement = (1's complement +1)

- Note: Adding a 2's complement number to the original number produces a result of zero.

(2's complement of A) $+A=0$.

The 2 's complement of A is like - A

Unsigned subtraction (separate sign bit)

- General algorithm for A - B:

1. Get the 2 's complement of B
(-B)
2. Add that value to A
3. If there is an end carry ($\mathrm{C}_{\text {out }}$ is high), the final result is positive and does not change.
4. If there is no end carry ($\mathrm{C}_{\text {out }}$ is low), get the 2 's complement of the result ($\mathrm{B}-\mathrm{A}$) and add a negative sign to it, or set the sign bit high ($-(B-A)=A-B)$.

Unsigned subtraction example

- 53-27

00110101
-00011011

- 27-53

00011011
-00110101

Signed subtraction (easier)

- Store negative numbers in 2's complement notation.
- Subtraction can then be performed by using the binary adder circuit with negative numbers.
- To compute $\mathrm{A}-\mathrm{B}$, just do $\mathrm{A}+(-\mathrm{B})$
- Need to get -B first (the 2's complement of B)

Signed subtraction example (6-bit)

-21-23

- 23 is 010111
- 21 is 010101
- -23 is 101001 (2's complement of 32)
- 21-23 is 111110 which is -2

Signed addition example (6-bit)

- $21+23$
- 23 is 010111
- 21 is 010101
- 23+21: 101100
- This is -20 !
- The supposed result 44 is exceeding the range of 6 -bit signed integers. This is called an overflow.

Now you understand C code better

```
#include <stdio.h>
int main()
{
    /* char is 8-bit integer */
    signed char a = 100;
    signed char b = 120;
    signed char s = a + b;
    printf("%d\n", s);
}
```


Trivia about sign numbers

- The largest positive 8-bit signed integer?
- $01111111=127 \quad(0$ followed by all 1)
- The smallest negative 8 -bit signed integer?
- $10000000=-128 \quad$ (1 followed by all 0)
- The binary form 8-bit signed integer - 1 ?
- 11111111 (all one)
- For n-bit signed number there are 2^{n} possible values
- $2^{\mathrm{n}-1}$ are negative numbers (e.g. 8 bit, -1 to -128)
- $2^{n-1}-1$ are positive number (e.g. 8 bit, 1 to 127)
- and a zero

-128: 10000000 (signed)

Subtraction circuit

- If sub $=0, S=X+Y$
- If sub $=1, S=X-Y$

One circuit, both adder or subtractor

Decoders

What is a decoder?

Decoders

- Decoders are essentially translators.
- Translate from the output of one circuit to the input of another.
- Example: Binary signal splitter
- Activates one of four output lines, based on a two-digit binary number.

Demultiplexers

- Related to decoders: demultiplexers.
- Does multiplexer operation, in reverse.

Multiplexer:
Choose one from multiple inputs as output

Demultiplexer:
One input chooses from multiple outputs

7-segment decoder

- Common and useful decoder application.
- Translate from a 4-digit binary number to the seven segments of a digital display.
- Each output segment has a particular logic that defines it.
- Example: Segment 0
- Activate for values: $0,2,3,5,6,7,8,9$. \qquad

- First step: Build the truth table and K-map.

Note

What we talk about here is NOT the same as what we do in Lab 2

- In labs we translate numbers $0,1,3,4,5,6$ to displayed letters such as ($H, E, L, L, O, \ldots, L, I)$
- This is specially defined for the lab
- Here we are talking about translating $0,1,2,3,4, \ldots$, to displayed $0,1,2$, 3, 4, ...
- This is more common use

7-segment decoder

- For 7-seg decoders, turning a segment on involves driving it low. (active low)
- (In Lab 2, we treat it like active high. It's OK because Logisim does autoconversion to make it work).
- i.e. Assuming a 4-digit binary number, segment 0 is low whenever input number is $0000,0010,0011,0101,0110$, 0111,1000 or 1001, and high whenever input number is 0001 or 0100 .
- This create a truth table and map like the following...

7-segment decoder

\mathbf{X}_{3}	\mathbf{X}_{2}	\mathbf{X}_{1}	\mathbf{X}_{0}	HEX $_{0}$
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0

6 rows missing! 1010 ~ 1111

	$\overline{\mathbf{x}}_{1} \cdot \overline{\mathrm{x}}_{0}$	$\overline{\mathrm{x}}_{1} \cdot \mathrm{x}_{0}$	$\mathrm{x}_{1} \cdot \mathrm{x}_{0}$	$\mathrm{x}_{1} \cdot \overline{\mathrm{x}}_{0}$
$\overline{\mathrm{x}}_{3} \cdot \overline{\mathrm{x}}_{2}$	0	1	0	0
$\overline{\mathrm{x}}_{3} \cdot \mathbf{x}_{2}$	1	0	0	0
$\mathbf{x}_{3} \cdot \mathbf{x}_{2}$	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}
$\mathbf{x}_{3} \cdot \overline{\mathrm{x}}_{2}$	0	0	\mathbf{x}	\mathbf{x}

- $\operatorname{HEXO}=\bar{X}_{3} \cdot \bar{X}_{2} \cdot \bar{X}_{1} \cdot \mathrm{X}_{0}$ $+\bar{X}_{3} \cdot \mathrm{X}_{2} \cdot \overline{\mathrm{X}}_{1} \cdot \overline{\mathrm{X}}_{0}$
- But what about input values from 1010 to 1111?

"Don't care" values

- Some input values will never happen, so their output values do not have to be defined.
- Recorded as ' X ' in the Karnaugh map.
- These values can be assigned to whatever values you want, when constructing the final circuit.

$$
\begin{aligned}
\mathrm{HEXO} & =\overline{\mathrm{x}}_{3} \cdot \overline{\mathrm{x}}_{2} \cdot \overline{\mathrm{x}}_{1} \cdot \mathrm{x}_{0} \\
+ & \mathrm{x}_{2} \cdot \overline{\mathrm{x}}_{1} \cdot \overline{\mathrm{x}}_{0}
\end{aligned}
$$

	$\overline{\mathrm{X}}_{1} \cdot \overline{\mathrm{X}}_{0}$	$\overline{\mathrm{X}}_{1} \cdot \mathrm{X}_{0}$	$\mathrm{X}_{1} \cdot \mathrm{X}_{0}$	$\mathrm{x}_{1} \cdot \overline{\mathrm{X}}_{0}$
$\overline{\mathrm{X}}_{3} \cdot \overline{\mathrm{X}}_{2}$	0	1	0	0
$\overline{\mathrm{x}}_{3} \cdot \mathrm{x}_{2}$	1	0	0	0
$\mathrm{X}_{3} \cdot \mathrm{X}_{2}$	X	x	x	X
$\mathrm{X}_{3} \cdot \overline{\mathrm{x}}_{2}$	0	0	X	X

Boxes can cover " x "'s, or not, whichever you like.

Again for segment 1

\mathbf{X}_{3}	\mathbf{X}_{2}	\mathbf{X}_{1}	\mathbf{X}_{0}	HEX
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0

	$\overline{\mathrm{x}}_{1} \cdot \overline{\mathrm{x}}_{0}$	$\bar{X}_{1} \cdot \mathrm{x}_{0}$	$\mathrm{X}_{1} \cdot \mathrm{X}_{0}$	$\mathrm{x}_{1} \cdot \overline{\mathrm{x}}_{0}$
$\overline{\mathrm{X}}_{3} \cdot \overline{\mathrm{X}}_{2}$	0	0	0	0
$\bar{X}_{3} \cdot \mathrm{X}_{2}$	0	1	0	1
$\mathrm{X}_{3} \cdot \mathrm{X}_{2}$	X	X	x	x
$\mathrm{X}_{3} \cdot \overline{\mathrm{X}}_{2}$	0	0	X	X

$$
\begin{gathered}
\operatorname{HIT} 1=\mathrm{X}_{2} \cdot \overline{\mathrm{X}}_{1} \cdot \mathrm{X}_{0}+ \\
\mathrm{X}_{2} \cdot \mathrm{X}_{1} \cdot \overline{\mathrm{X}}_{0}
\end{gathered}
$$

Again for segment 2

\mathbf{X}_{3}	\mathbf{X}_{2}	\mathbf{X}_{1}	\mathbf{X}_{0}	HEX
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0

	$\bar{x}_{1} \cdot \bar{x}_{0}$	$\bar{x}_{1} \cdot \mathbf{x}_{0}$	$\mathbf{x}_{1} \cdot \mathbf{x}_{0}$	$\mathrm{x}_{1} \cdot \overline{\mathrm{x}}_{0}$
$\overline{\mathrm{x}}_{3} \cdot \overline{\mathrm{x}}_{2}$	0	0	0	1
$\overline{\mathrm{x}}_{3} \cdot \mathbf{x}_{2}$	0	0	0	0
$\mathbf{x}_{3} \cdot \mathbf{x}_{2}$	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}
$\mathbf{x}_{3} \cdot \bar{x}_{2}$	0	0	\mathbf{x}	\mathbf{x}

HEX2 $=\overline{\mathrm{x}}_{2} \cdot \mathrm{x}_{1} \cdot \overline{\mathrm{x}}_{0}$

The final 7-seg decoder

- Decoders all look the same, except for the inputs and outputs.
- Unlike other devices, the implementation differs from decoder to decoder.

Comparators

Comparators

- A circuit that takes in two input vectors, and determines if the first is greater than, less than or equal to the second.
- How does one make that in a circuit?

Basic Comparators

- Consider two binary numbers

A and B, where A and B are one bit long.
- The circuits for this would be:
- $A==B$:
- $A>B$:
- $\mathrm{A}<\mathrm{B}$:

Basic Comparators

- What if A and B are two bits long?
- The terms for this circuit for have to expand to reflect the second signal.
- For example:

- $A==B$:

$$
\left(\mathrm{A}_{1} \cdot \mathrm{~B}_{1}+\overline{\mathrm{A}}_{1} \cdot \overline{\mathrm{~B}}_{1}\right) \cdot\left(\mathrm{A}_{0} \cdot \mathrm{~B}_{0}+\overline{\mathrm{A}}_{0} \cdot \overline{\mathrm{~B}}_{0}\right)
$$

Basic Comparators

- What about checking if A is greater than B ?

- $A>B$:

- $A<B$:

$$
\overline{\mathrm{A}}_{1} \cdot \mathrm{~B}_{1}+\left(\mathrm{A}_{1} \cdot \mathrm{~B}_{1}+\overline{\mathrm{A}}_{1} \cdot \overline{\mathrm{~B}}_{1}\right) \cdot\left(\overline{\mathrm{A}}_{0} \cdot \mathrm{~B}_{0}\right)
$$

$\mathrm{A}>\mathrm{B}$ if and only if $\mathrm{A} 1>\mathrm{B} 1$ or $(\mathrm{A} 1=\mathrm{B} 1$ and $\mathrm{A} 0>\mathrm{B} 0)$

General Comparators

- The general circuit for comparators requires you to define equations for each case.
- Case \#1: Equality
- If inputs A and B are equal, then all bits must be the same.
- Define X_{i} for any digit i:
- (equality for digit i)

$$
X_{i}=A_{i} \cdot B_{i}+\bar{A}_{i} \cdot \bar{B}_{i}
$$

- Equality between A and B is defined as:

$$
\mathrm{A}==\mathrm{B}: \mathrm{X}_{0} \cdot \mathrm{X}_{1} \cdot \ldots \cdot \mathrm{X}_{\mathrm{n}}
$$

Comparators

- Case \#2: A > B
- The first non-matching bits occur at bit i, where $A_{i}=1$ and $B_{i}=0$. All higher bits match.
- Using the definition for X_{i} from before:

$$
A>B=A_{n} \cdot \bar{B}_{n}+X_{n} \cdot A_{n-1} \cdot \bar{B}_{n-1}+\ldots+A_{0} \cdot \bar{B}_{0} \cdot \prod_{k=1}^{n} X_{k}
$$

- Case \#3: A < B
- The first non-matching bits occur at bit i, where $A_{i}=0$ and $B_{i}=1$. Again, all higher bits match.

$$
A<B=\bar{A}_{n} \cdot B_{n}+X_{n} \cdot \bar{A}_{n-1} \cdot B_{n-1}+\ldots+\bar{A}_{0} \cdot B_{0} \cdot \prod_{k=1}^{n} X_{k}
$$

Comparator truth table

- Given two input vectors of size $n=2$, output of circuit is shown at right.

Inputs							
\boldsymbol{A}_{1}	\boldsymbol{A}_{0}	\boldsymbol{B}_{1}	\boldsymbol{B}_{0}	$\boldsymbol{A}<\boldsymbol{B}$	$\boldsymbol{A}=\boldsymbol{B}$	$\boldsymbol{A} \boldsymbol{>} \boldsymbol{B}$	
0	0	0	0	0	1	0	
0	0	0	1	1	0	0	
0	0	1	0	1	0	0	
0	0	1	1	1	0	0	
0	1	0	0	0	0	1	
0	1	0	1	0	1	0	
0	1	1	0	1	0	0	
0	1	1	1	1	0	0	
1	0	0	0	0	0	1	
1	0	0	1	0	0	1	
1	0	1	0	0	1	0	
1	0	1	1	1	0	0	
1	1	0	0	0	0	1	
1	1	0	1	0	0	1	
1	1	1	0	0	0	1	
1	1	1	1	0	1	0	

Comparator example (cont'd)

$$
\mathrm{LT}=\mathrm{B}_{1} \cdot \overline{\mathrm{~A}}_{1}+\mathrm{B}_{0} \cdot \mathrm{~B}_{1} \cdot \overline{\mathrm{~A}}_{0}+\mathrm{B}_{0} \cdot \overline{\mathrm{~A}}_{0} \cdot \overline{\mathrm{~A}}_{1}
$$

Comparator example (cont'd)

$$
\mathrm{A}=\mathrm{B}:
$$

	$\overline{\mathbf{B}}_{0} \cdot \overline{\mathbf{B}}_{1}$	$\mathbf{B}_{0} \cdot \overline{\mathbf{B}}_{1}$	$\mathbf{B}_{0} \cdot \mathbf{B}_{1}$	$\overline{\mathrm{~B}}_{0} \cdot \mathbf{B}_{1}$
$\overline{\mathbf{A}}_{0} \cdot \overline{\mathbf{A}}_{1}$	1	0	0	0
$\mathbf{A}_{0} \cdot \overline{\mathrm{~A}}_{1}$	0	1	0	0
$\mathbf{A}_{0} \cdot \mathbf{A}_{1}$	0	0	1	0
$\bar{A}_{0} \cdot \mathbf{A}_{1}$	0	0	0	1

$$
\begin{aligned}
\mathrm{EQ}= & \overline{\mathrm{B}}_{0} \cdot \overline{\mathrm{~B}}_{1} \cdot \overline{\mathrm{~A}}_{0} \cdot \overline{\mathrm{~A}}_{1}+\mathrm{B}_{0} \cdot \overline{\mathrm{~B}}_{1} \cdot \mathrm{~A}_{0} \cdot \overline{\mathrm{~A}}_{1}+ \\
& \mathrm{B}_{0} \cdot \mathrm{~B}_{1} \cdot \mathrm{~A}_{0} \cdot \mathrm{~A}_{1}+\overline{\mathrm{B}}_{0} \cdot \mathrm{~B}_{1} \cdot \overline{\mathrm{~A}}_{0} \cdot \mathrm{~A}_{1}
\end{aligned}
$$

Comparator example (cont'd)

$A>B:$

	$\overline{\mathbf{B}}_{0} \cdot \overline{\mathbf{B}}_{1}$	$\mathbf{B}_{0} \cdot \overline{\mathbf{B}}_{1}$	$\mathbf{B}_{0} \cdot \mathbf{B}_{1}$	$\overline{\mathbf{B}}_{0} \cdot \mathbf{B}_{1}$
$\overline{\mathbf{A}}_{0} \cdot \overline{\mathbf{A}}_{1}$	0	0	0	0
$\mathbf{A}_{0} \cdot \overline{\mathrm{~A}}_{1}$	1	0	0	0
$\mathbf{A}_{0} \cdot \mathbf{A}_{1}$	1	1	0	1
$\bar{A}_{0} \cdot \mathbf{A}_{1}$	1	1	0	0

$$
\mathrm{GT}=\overline{\mathrm{B}}_{1} \cdot \mathrm{~A}_{1}+\overline{\mathrm{B}}_{0} \cdot \overline{\mathrm{~B}}_{1} \cdot \mathrm{~A}_{0}+\overline{\mathrm{B}}_{0} \cdot \mathrm{~A}_{0} \cdot \mathrm{~A}_{1}
$$

Comparing larger numbers

- As numbers get larger, the comparator circuit gets more complex.
- At a certain level, it can be easier sometimes to just process the result of a subtraction operation instead.
- Easier, less circuitry, just not faster.

Today we learned

How a computer does following things

- Control the flow of signal (mux and demux)
- Arithmetic operations: adder, subtractor
- Decoder
- Comparators

Next week:

- Sequential circuits: circuits that have memories.

CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto
Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

