CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto Fall 2020

The content of this lecture is adapted from the lectures of Larry Zheng and Steve Engels

CSCB58 Week 3

Quiz 1: Question 2 Clarification

Attempts: 97 out of 97

Adding impurities to the semiconductors causes (select all that apply.)

We are here

Logical Devices

Building up from gates...

- Some common and more complex structures:
 - Multiplexers (MUX)
 - Adders (half and full)
 - Subtractors
 - Decoders
 - Seven-segment decoders
 - Comparators

Multiplexers

Logical devices

- Certain structures are common to many circuits, and have block elements of their own.
 - e.g. Multiplexers (short form: mux)
 - <u>Behaviour</u>: Output is X if S is 0, and Y if S is 1, i.e., S selects which input can go through

Multiplexer design

	₹ ·s	y ⋅s	Υ·S	¥ ∙s		
x	0	0	1	0		
x	1	0	1	1		

$$M = Y \cdot S + X \cdot \overline{S}$$

Multiplexer uses

- Muxes are very useful whenever you need to select from multiple input values.
 - Example:
 - Surveillance video monitors,
 - Digital cable boxes,
 - routers.

Demultiplexers

• Does multiplexer operation, in reverse.

Mux + Demux

Adder circuits

Adders

- Also known as binary adders.
 - Small circuit devices that add two 1-bit number.
 - Combined together to create iterative combinational circuits – add multiple-bit numbers
- Types of adders:
 - Half adders (HA)
 - Full adders (FA)
 - Ripple Carry Adder
 - Carry-Look-Ahead Adder (CLA)

Review of Binary Math

Review of Binary Math

• Each digit of a decimal number represents a power of 10:

$$258 = 2 \times 10^2 + 5 \times 10^1 + 8 \times 10^0$$

• Each digit of a binary number represents a power of 2:

$$01101_{2} = 0x2^{4} + 1x2^{3} + 1x2^{2} + 0x2^{1} + 1x2^{0}$$
$$= 13_{10}$$

Unsigned binary addition

Half Adder

Input: two 1-bit numbers Output: 1-bit sum and 1-bit carry

Half Adders

• A 2-input, 1-bit width binary adder that performs the following computations:

- A half adder adds two bits to produce a two-bit sum.
- The sum is expressed as a sum bit S and a carry bit C.

Half Adder Implementation

• Equations and circuits for half adder units are easy to define (even without Karnaugh maps)

$$C = X \cdot Y \qquad S = X \cdot \overline{Y} + \overline{X} \cdot Y \\ = X \text{ xor } Y$$

A half adder outputs a carry-bit, but does not take a carry-bit as input.

Full Adder

takes a carry bit as input

Full Adders

- Similar to half-adders, but with another input Z, which represents a carry-in bit.
 - C and Z are sometimes labeled as $C_{\tt out}$ and $C_{\tt in}.$
- When Z is 0, the unit behaves exactly like...
 - a half adder.
- When Z is 1:

Full Adder Design

x	Y	Z	С	S		С	$\overline{\mathbf{Y}} \cdot \overline{\mathbf{Z}}$	<u>Y</u> ·Z	У·Z	y · z	
0	0	0	0	0							
0	0	1	0	1		x	0	0	1	0	
0	1	0	0	1		x	0	1	1	1	
0	1	1	1	0							
1	0	0	0	1		S	Y·Z	<u>¥</u> ·z	У·Z	y ∙z	
1	0	1	1	0		x	0		0	1	
1	1	0	1	0		Λ			0		
1	1	1	1	1		X	1	0	1	0	
С	$C = X \cdot Y + X \cdot Z + Y \cdot Z$					S = X xor Y xor Z					
$C = X \cdot Y + (X \text{ xor } Y) \cdot Z$				For gate reuse (X xor Y) considering both C and S							

• The C term can also be rewritten as:

 $C = X \cdot Y + (X \text{ xor } Y) \cdot Z$

- Two terms come from this:
 - X · Y = carry generate (G).
 - Whether X and Y generate a carry bit
 - X xor Y = carry propagate (P).
 - Whether carry will be propagated to Cout
- Results in this circuit ightarrow

S = X xor Y xor Z

Now we can add one bit properly, but most of the numbers we use have more than one bits.

- int, unsigned int: 32 bits (architecture-dependent)
- short int, unsigned short int: 16 bits
- long long int, unsigned long long int: 64 bit
- char, unsigned char: 8 bits

How do we add multiple-bit numbers?

Each full adder takes in a carry bit and outputs a carry bit.

Each full adder can take in a carry bit which is output by another full adder.

That is, they can be chained up.

Ripple-Carry Binary Adder

Full adders chained up, for multiple-bit addition

Ripple-Carry Binary Adder

• Full adder units are chained together in order to perform operations on signal vectors.

 $S_3S_2S_1S_0$ is the sum of $X_3X_2X_1X_0$ and $Y_3Y_2Y_1Y_0$

The role of C_{in}

- Why can't we just have a half-adder for the smallest (right-most) bit?
- Because if we can use it to do **Subtraction**!

Let's play a game...

- 1. Pick two numbers between 0 and 31
- 2. Convert both numbers to **5-bit** binary form
- 3. Invert each digit of the smaller number
- 4. Add up the big binary number and the inverted small binary number
- 5. Add 1 to the result, keep the lowest 5 digits
- 6. Convert the result to a decimal number

What do you get?

You just did subtraction without doing subtraction!

Subtractors

- Subtractors are an extension of adders.
 - Basically, perform addition on a negative number.
- Before we can do subtraction, need to understand negative binary numbers.
- Two types:
 - Unsigned = a separate bit exists for the sign; data bits store the positive version of the number.
 - Signed = all bits are used to store a 2's complement negative number.

Two's complement

- Need to know how to get 1's complement:
 - Given number X with n bits, take $(2^n-1) X$
 - Negates each individual bit (bitwise NOT).

• <u>Note:</u> Adding a 2's complement number to the original number produces a result of zero.

(2's complement of A) + A = 0.

The 2's complement of A is like -A

Unsigned subtraction (separate sign bit)

- General algorithm for A B:
 - 1. Get the 2's complement of B (-B)
 - 2. Add that value to A
 - 3. If there is an end carry (C_{out} is high), the final result is positive and does not change.
 - If there is no end carry (C_{out} is low), get the 2's complement of the result (B-A) and add a negative sign to it, or set the sign bit high (-(B-A) = A-B).

Unsigned subtraction example

Signed subtraction (easier)

- Store negative numbers in 2's complement notation.
 - Subtraction can then be performed by using the binary adder circuit with negative numbers.
 - To compute A B, just do A + (-B)
 - Need to get -B first (the 2's complement of B)

Signed subtraction example (6-bit)

•21-23

- 23 is 010111
- 21 is 010101
- -23 is 101001 (2's complement of 32)
- 21-23 is 111110 which is -2

Signed addition example (6-bit)

•21 + 23

- 23 is 010111
- 21 is 010101
- 23+21: 101100
- This is -20!
- The supposed result 44 is exceeding the range of 6-bit signed integers. This is called an overflow.

Now you understand C code better

#include <stdio.h>

int main()

{

/* char is 8-bit integer */
signed char a = 100;
signed char b = 120;
signed char s = a + b;

printf("%d\n", s);

}

Trivia about sign numbers

- The largest positive 8-bit signed integer?
 - 01111111 = 127 (0 followed by all 1)
- The smallest negative 8-bit signed integer?
 - 1000000 = -128 (1 followed by all 0)
- The binary form 8-bit signed integer -1?
 - 11111111 (all one)
- For n-bit signed number there are 2ⁿ possible values
 - 2ⁿ⁻¹ are negative numbers (e.g. 8 bit, -1 to -128)
 - 2ⁿ⁻¹-1 are positive number (e.g. 8 bit, 1 to 127)
 - and a zero

-128: 1000000 (signed)

Subtraction circuit

- If sub = 0, S = X + Y
- If sub = 1, S = X Y

One circuit, both adder or subtractor

Decoders

What is a decoder?

Decoders

- Decoders are essentially translators.
 - Translate from the output of one circuit to the input of another.
- Example: Binary signal splitter
 - Activates one of four output lines, based on a two-digit binary number.

Demultiplexers

- Related to decoders: demultiplexers.
 - Does multiplexer operation, in reverse.

Multiplexer: Choose one from multiple inputs as output

Demultiplexer: One input chooses from multiple outputs

7-segment decoder

- Common and useful decoder application.
 - Translate from a 4-digit binary number to the seven segments of a digital display.
 - Each output segment has a particular logic that defines it.
 - Example: Segment 0
 - Activate for values: 0, 2, 3, 5, 6, 7, 8, 9.
 - In binary: 0000, 0010, 0011, 0101, 0110, 0111, 1000, 1001.
 - <u>First step</u>: Build the truth table and K-map.

Note

What we talk about here is NOT the same as what we do in Lab 2

- In labs we translate numbers 0, 1, 3, 4, 5, 6 to displayed letters such as (H, E, L, L, O, _, E, L, I)
 - This is specially defined for the lab
- Here we are talking about translating 0, 1, 2, 3, 4,..., to displayed 0, 1, 2, 3, 4, ...
 3, 4, ...
 - This is more common use

7-segment decoder

- For 7-seg decoders, turning a segment on involves driving it <u>low</u>. (active low)
 - (In Lab 2, we treat it like active high. It's OK because Logisim does autoconversion to make it work).
 - i.e. Assuming a 4-digit binary number, segment 0 is low whenever input number is 0000, 0010, 0011, 0101, 0110, 0111, 1000 or 1001, and high whenever input number is 0001 or 0100.
 - This create a truth table and map like the following...

7-segment decoder

X ₃	X ₂	X 1	X 0	HEX ₀
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0

6 rows missing! 1010 ~ 1111

	$\overline{\mathbf{x}}_{1} \cdot \overline{\mathbf{x}}_{0}$	$\overline{\mathbf{x}}_{1} \cdot \mathbf{x}_{0}$	$\mathbf{x}_1 \cdot \mathbf{x}_0$	$\mathbf{x}_1 \cdot \overline{\mathbf{x}}_0$
$\overline{\mathbf{X}}_3 \cdot \overline{\mathbf{X}}_2$	0	1	0	0
$\overline{\mathbf{X}}_3 \cdot \mathbf{X}_2$	1	0	0	0
$\mathbf{X}_3 \cdot \mathbf{X}_2$	х	х	х	х
$\mathbf{x}_3 \cdot \overline{\mathbf{x}}_2$	0	0	х	х

- HEXO = $\overline{X}_3 \cdot \overline{X}_2 \cdot \overline{X}_1 \cdot X_0$ + $\overline{X}_3 \cdot \overline{X}_2 \cdot \overline{X}_1 \cdot \overline{X}_0$
- But what about input values from 1010 to 1111?

"Don't care" values

- Some input values will never happen, so their output values do not have to be defined.
 - Recorded as 'X' in the Karnaugh map.
- These values can be assigned to whatever values you want, when constructing the final circuit.

$$HEXO = \overline{\mathbf{x}}_{3} \cdot \overline{\mathbf{x}}_{2} \cdot \overline{\mathbf{x}}_{1} \cdot \mathbf{x}_{0}$$
$$+ \mathbf{x}_{2} \cdot \overline{\mathbf{x}}_{1} \cdot \overline{\mathbf{x}}_{0}$$

Boxes can cover "x"'s, or not, whichever you like.

Again for segment 1

X ₃	X ₂	X 1	X 0	HEX ₁
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0

	$\overline{\mathbf{x}}_{1} \cdot \overline{\mathbf{x}}_{0}$	$\overline{\mathbf{x}}_{1} \cdot \mathbf{x}_{0}$	$\mathbf{X}_1 \cdot \mathbf{X}_0$	$\mathbf{x}_1 \cdot \overline{\mathbf{x}}_0$
$\overline{\mathbf{X}}_3 \cdot \overline{\mathbf{X}}_2$	0	0	0	0
$\overline{\mathbf{X}}_3 \cdot \mathbf{X}_2$	0	1	0	1
$\mathbf{x}_3 \cdot \mathbf{x}_2$	х	x	х	x
$\mathbf{x}_3 \cdot \overline{\mathbf{x}}_2$	0	0	х	х

$$HEX1 = X_2 \cdot \overline{X}_1 \cdot X_0 + X_2 \cdot \overline{X}_1 \cdot \overline{X}_0$$

Again for segment 2

X ₃	X ₂	X 1	X 0	HEX ₂
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0

	$\overline{\mathbf{x}}_{1} \cdot \overline{\mathbf{x}}_{0}$	$\overline{\mathbf{x}}_{1} \cdot \mathbf{x}_{0}$	$\mathbf{X}_1 \cdot \mathbf{X}_0$	$\mathbf{x}_1 \cdot \overline{\mathbf{x}}_0$
$\overline{\mathbf{X}}_3 \cdot \overline{\mathbf{X}}_2$	0	0	0	1
$\overline{\mathbf{X}}_3 \cdot \mathbf{X}_2$	0	0	0	0
$\mathbf{x}_3 \cdot \mathbf{x}_2$	х	x	х	x
$\mathbf{x}_3 \cdot \overline{\mathbf{x}}_2$	0	0	х	x

$$\mathbf{HEX2} = \overline{\mathbf{X}}_2 \cdot \mathbf{X}_1 \cdot \overline{\mathbf{X}}_0$$

The final 7-seg decoder

- Decoders all look the same, except for the inputs and outputs.
- Unlike other devices, the implementation differs from decoder to decoder.

Comparators

Comparators

- A circuit that takes in two input vectors, and determines if the first is greater than, less than or equal to the second.
- How does one make that in a circuit?

Basic Comparators

- Consider two binary numbers A and B, where A and B are one bit long.
- The circuits for this would be:

A	В
0	0
0	1
1	0
1	1

Basic Comparators

- What if A and B are two bits long?
- The terms for this circuit for have to expand to reflect the second signal.
- For example:

Basic Comparators

• What about checking if A is greater than B?

A > B if and only if A1 > B1 or (A1 = B1 and A0 > B0)

General Comparators

- The general circuit for comparators requires you to define equations for each case.
- Case #1: Equality
 - If inputs A and B are equal, then all bits must be the same.
 - Define X_{i} for any digit i:
 - (equality for digit i)

$$X_{i} = A_{i} \cdot B_{i} + \overline{A}_{i} \cdot \overline{B}_{i}$$

• Equality between A and B is defined as:

$$A == B : X_0 \cdot X_1 \cdot ... \cdot X_n$$

Comparators

- <u>Case #2:</u> A > B
 - The first non-matching bits occur at bit i, where $A_i=1$ and $B_i=0$. All higher bits match.
 - Using the definition for $X_{\underline{i}}$ from before:

$$A > B = A_n \cdot \overline{B}_n + X_n \cdot A_{n-1} \cdot \overline{B}_{n-1} + \dots + A_0 \cdot \overline{B}_0 \cdot \prod_{k=1}^n X_k$$

- <u>Case #3:</u> A < B
 - The first non-matching bits occur at bit i, where $A_i=0$ and $B_i=1$. Again, all higher bits match.

$$A < B = \overline{A}_n \cdot B_n + X_n \cdot \overline{A}_{n-1} \cdot B_{n-1} + \dots + \overline{A}_0 \cdot B_0 \cdot \prod_{k=1}^n X_k$$

Comparator truth table

 Given two input vectors of size n=2, output of circuit is shown at right.

Inputs				Outputs			
A ₁	A ₀	B_1	B_0	A < B	A = B	A > B	
0	0	0	0	0	1	0	
0	0	0	1	1	0	0	
0	0	1	0	1	0	0	
0	0	1	1	1	0	0	
0	1	0	0	0	0	1	
0	1	0	1	0	1	0	
0	1	1	0	1	0	0	
0	1	1	1	1	0	0	
1	0	0	0	0	0	1	
1	0	0	1	0	0	1	
1	0	1	0	0	1	0	
1	0	1	1	1	0	0	
1	1	0	0	0	0	1	
1	1	0	1	0	0	1	
1	1	1	0	0	0	1	
1	1	1	1	0	1	0	

Comparator example (cont'd)

A < B:

$$LT = B_1 \cdot \overline{A}_1 + B_0 \cdot B_1 \cdot \overline{A}_0 + B_0 \cdot \overline{A}_0 \cdot \overline{A}_1$$

Comparator example (cont'd)

$$EQ = \overline{B}_0 \cdot \overline{B}_1 \cdot \overline{A}_0 \cdot \overline{A}_1 + B_0 \cdot \overline{B}_1 \cdot A_0 \cdot \overline{A}_1 + B_0 \cdot \overline{B}_1 \cdot A_0 \cdot \overline{A}_1 + B_0 \cdot B_1 \cdot \overline{A}_0 \cdot A_1$$

•

Comparator example (cont'd)

A>B:

$$GT = \overline{B}_1 \cdot A_1 + \overline{B}_0 \cdot \overline{B}_1 \cdot A_0 + \overline{B}_0 \cdot A_0 \cdot A_1$$

Comparing larger numbers

- As numbers get larger, the comparator circuit gets more complex.
- At a certain level, it can be easier sometimes to just process the result of a subtraction operation instead.
 - Easier, less circuitry, just not faster.

Today we learned

How a computer does following things

- Control the flow of signal (mux and demux)
- Arithmetic operations: adder, subtractor
- Decoder
- Comparators

Next week:

• Sequential circuits: circuits that have memories.

CSCB58: Computer Organization

Prof. Gennady Pekhimenko

University of Toronto Fall 2020

The content of this lecture is adapted from the lectures of Larry Zheng and Steve Engels