
CSCB58:
Computer Organization

Prof. Gennady Pekhimenko

University of Toronto

Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

CSCB58 Week 2

2

Lab tips

• Login into Zoom for the time slot instructed

• Make sure your name matches your Quercus registration

• Make sure to finish the work that needs to be done before
the lab

• Be ready to explain your work to the TA in order to get full
mark

3

Lab tips

• Don’t store your files in any shared folder on the lab machines, to
avoid academic offence.

• Back up your work (copy to USB, upload to Dropbox, etc), you
may need it for future labs.

• Keep an eye on your quota.
• use the “quota” command

• use “du –d 1” to see which folder is taking up the space.

4

Logic Gates: Recap

5

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

A

B
Y

AND Gates

6

Truth table

A B Y

0 0 0

0 1 1

1 0 1

1 1 1

OR Gates

7

A

B
Y

A Y

0 1

1 0

NOT Gates

8

A Y

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

XOR Gates

9

A

B
Y

Bill Gates

10

Never repeat
jokes!

Marriage Logic Gate

11

Recap: Transistors

• Transistors, made of doped semiconductors put together (PN-
Junctions), is like a resistor but can change its resistance.

• It has two state: connected (switched ON) or disconnected (switched
OFF)

• The ON/OFF state of a transistor is controlled by an electrical signal,
like in the MOSFET.

12

MOSFET

Source Drain

Gate

13

Recap: Transistors into logic gates

Y

A

B

A

B

A

B

A

B

Vcc Vcc

A

B

Y

Vcc

A B

A B

A

Y

Vcc Vcc

B

AND OR
XOR

14

Next: From gates to circuits

15

Assembly Language

Processors

Finite State
Machines

Arithmetic
Logic Units

Devices Flip-flops

Circuits

Gates

Transistors

The goal

•Use the gates as building blocks to build large circuits
that represent complex logics.

• The beauty of abstraction in system design: from this
point on, we will just use the symbolic logic gates
(AND, OR, XOR, etc) without having to think about the
lower-level details (MOSFET, pn-junctions, etc).

16

Making logic with gates
• Logic gates like the following allow us to create an

output value, based on one or more input values.
• Each corresponds to Boolean logic that we’ve seen

before in math classes:

A

B
Y A

B
Y A Y

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

A B Y

0 0 0

0 1 1

1 0 1

1 1 1

A Y

0 1

1 0

17

Making boolean expressions

• So how would you represent Boolean expressions using
logic gates?

• Like so:

A
B

A
B

C

Y = (A or B) (not A or not B)and or C

18

Creating complex circuits

• What do we do in the case of
more complex circuits, with
several inputs and more than
one output?
• If you’re lucky, a truth table is

provided to express the circuit.

• Usually the behaviour of the
circuit is expressed in words, and
the first step involves creating a
truth table that represents the
described behaviour.

19

Circuit example

• The circuit on the right has three
inputs (A, B and C) and two outputs
(X and Y).

• What logic is needed to set X high when

all three inputs are high?

• What logic is needed to set Y high when the
number of high inputs is odd?

Logic
Circuit

A

B

C

X

Y

20

Combinational circuits

• Small problems can be solved easily.

A

B
X

C

A

B

C

Y

A

B

C

X high when all
three inputs are
high

Y high when
number of high is
odd

21

For more complicated circuits,
we need a systematical approach

22

Creating complex logic

• The general approach

• Basic steps:
1. Create truth tables based on the desired behaviour

of the circuit.

2. Come up with a “good” Boolean expression that has
exactly that truth table.

3. Convert Boolean expression to gates.

• The key to an efficient design?
• Spending extra time on Step #2.

23

First, a better way to
represent truth tables

24

Example truth table

• Consider the following example:
• “Y is high only when B and C are both high”

• This leads to the truth table on the
right.
• Do we always have to draw the whole

table?

• Is there a better way to describe the truth
table?

A B C Y

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

This is all we
needed to
express!

25

Yes, use “Minterms” and “Maxterms”

26

Quick note about notations

• AND operations are denoted in these expressions by the
multiplication symbol.
• e.g. A·B·C or A*B*C or A˄B˄C

• OR operations are denoted by the addition symbol.
• e.g. A+B+C or A˅B˅C

• NOT is denoted by multiple symbols.
• e.g. ¬A or A’ or A

• XOR occurs rarely in circuit expressions.
• e.g. A⊕ B

27

Warm-Up Exercise
For each of the following logic expressions, what are the A, B, C values
that make the expression evaluate to 1 ?

A’B’C’

• A=0, B=0, C=0 , and only this

ABC

• 111 and only this

A’BC

• 011 and only this

ABC’

• 110 and only this

28

Minterms, informally
• First, sort the rows according to the value of the number “ABC”

represents

• Then for each row, find the AND expression that evaluates to 1 iff ABC
are of the values in the row. We name the AND expression as m{row number}

A B C Y

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0Sorted 29

A’B’C’

A’B’C

A’BC’

A’BC

AB’C’

AB’C

ABC’

ABC

m0

m1

m2

m3

m4

m5

m6

m7

Minterm: formal description

Minterm: an AND true or complemented expression
with every input present in form.

A B C Y

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Minterm Y

m0 0

m1 1

m2 1

m3 1

m4 1

m5 0

m6 1

m7 0

m0: A·B·C

m1: A·B·C

m2: A·B·C

m3: A·B·C

m7: A·B·C
30

Minterm (m) and Maxterm (M)

Maxterm: an OR expression with every input
present in true or complemented form.

Minterm: an AND expression with every
input present in true or complemented form.

M7: A+B+CM6: A+B+C

M1: A+B+CM0: A+B+C

Feel something fishy? 31

Naming!

m0 is A·B·C

M0 is A+B+C

A·B·C is 1 only when A, B, C are 0, 0, 0

A+B+C is 0 only when A, B, C are 0, 0, 0

Minterm is about
when the output is 1

Maxterm is about
when the output is 0

32

Exercise: Minterm or Maxterm?
given four inputs: (A, B, C, D)

A·B·C
No! Every input needs to be

there, D is missing!

A·B+C·D Neither! It has to be only AND
or only OR, cannot mix

A+B+D Neither! Same reason

A+B+C+D Maxterm, M5

A·B·C·D Minterm, m10
33

Quick fact

•Given n inputs, how many possible
minterms and maxterms are there?
•2n minterms and 2n maxterms

possible (same as the number of rows
in a truth table).

34

Use minterms and maxterms
to go from truth table to logic expression

35

Using minterms

• What are minterms used for?
• A single minterm indicates a set of

inputs that will make the output go
high.

• Example: Describe the truth table on
the right using minterm:

•m2

A B C D m2

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

A’B’CD’

36

Using minterms

• What happens when you
OR two minterms?
• Result is output that goes

high in both minterm
cases.

• Describe the truth table
with the right-most
column of outputs

•m2 + m8

A B C D m2 m8 m2+m8

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 1 0 1

0 0 1 1 0 0 0

0 1 0 0 0 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 1 1 0 0 0

1 0 0 0 0 1 1

1 0 0 1 0 0 0

1 0 1 0 0 0 0

1 0 1 1 0 0 0

1 1 0 0 0 0 0

1 1 0 1 0 0 0

1 1 1 0 0 0 0

1 1 1 1 0 0 0

We came up with a logic expression that has the desired
truth table, easily: A’B’CD’ + AB’C’D’ 37

Creating boolean expressions

• Two canonical forms of boolean expressions:
• Sum-of-Minterms (SOM): AB + A’B + AB’

• Each minterm corresponds to a single high output in the truth
table.

• Also known as: Sum-of-Products.

• Product-of-Maxterms (POM): (A+B)(A’ + B)(A+B’)
• Each maxterm corresponds to a single low output in the truth

table.

• Also known as Product-of-Sums.

Every logic expression can be converted to a
SOM, also to a POM. 38

Y = m2 + m6 + m7 + m10 (SOM)

A B C D m2 m6 m7 m10 Y

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 1 0 1 0 0 0 1

0 0 1 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

0 1 1 0 0 1 0 0 1

0 1 1 1 0 0 1 0 1

1 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0

1 0 1 0 0 0 0 1 1

1 0 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0

1 1 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 39

Y = M3· M5· M7· M10· M14 (POM)

A B C D M3 M5 M7 M10 M14 Y

0 0 0 0 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1

0 0 1 0 1 1 1 1 1 1

0 0 1 1 0 1 1 1 1 0

0 1 0 0 1 1 1 1 1 1

0 1 0 1 1 0 1 1 1 0

0 1 1 0 1 1 1 1 1 1

0 1 1 1 1 1 0 1 1 0

1 0 0 0 1 1 1 1 1 1

1 0 0 1 1 1 1 1 1 1

1 0 1 0 1 1 1 0 1 0

1 0 1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 1 40

Sum-of-Minterms vs. Product-of-Maxterm

• SOM expresses which inputs cause the output to go high

• POM expresses which inputs cause the output to go low

• SOMs are useful in cases with very few input
combinations that produce high output

• POMs are useful when expressing truth tables that have
very few low output cases

41

Y = m2 + m6 + m7 + m10 (SOM)
A B C D m2 m6 m7 m10 Y

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 1 0 1 0 0 0 1

0 0 1 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

0 1 1 0 0 1 0 0 1

0 1 1 1 0 0 1 0 1

1 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0

1 0 1 0 0 0 0 1 1

1 0 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0

1 1 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

What if we do this using POM?

42

Y = M3· M5· M7· M10· M14 (POM)
A B C D M3 M5 M7 M10 M14 Y

0 0 0 0 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1

0 0 1 0 1 1 1 1 1 1

0 0 1 1 0 1 1 1 1 0

0 1 0 0 1 1 1 1 1 1

0 1 0 1 1 0 1 1 1 0

0 1 1 0 1 1 1 1 1 1

0 1 1 1 1 1 0 1 1 0

1 0 0 0 1 1 1 1 1 1

1 0 0 1 1 1 1 1 1 1

1 0 1 0 1 1 1 0 1 0

1 0 1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 1

What if we do this using SOM?

43

Converting SOM to gates

• Once you have a Sum-of-Minterms expression, it is easy to convert
this to the equivalent combination of gates:

¬A

Y

¬B

¬C

¬A

¬B

C

¬A

B

¬C

¬A

B

C

m0 + m1 + m2 + m3 =

A·B·C + A·B·C +

A·B·C + A·B·C

44

45

Reducing circuits

46

Reasons for reducing circuits

• To minimize the number of gates, we want to reduce the
Boolean expression as much as possible from a collection of
minterms to something smaller.

• This is where math skills come in handy ☺

¬A

Y

¬B

¬C

¬A

¬B

C

¬A

B

¬C

¬A

B

C

YA

47

Boolean algebra review
• Axioms:

• From this, we can extrapolate:

0·0 = 0 0·1 = 1·0 = 0

1·1 = 1 if x = 1, x = 0

x·0 = 0 x+1 = 1

x·1 = x x+0 = x

x·x = x x+x = x

x·x = 0 x+x = 1

x = x

48

Other boolean identities
• Commutative Law:

• Associative Law:

• Distributive Law:

x·y = y·x x+y = y+x

x·(y·z) = (x·y)·z

x+(y+z) = (x+y)+z

x·(y+z) = x·y + x·z

x+(y·z) = (x+y)·(x+z)

49

Other boolean identities

• De Morgan’s Laws:

x·y = x+y

x+y = x·y

50

De Morgan and NAND gates
• De Morgan’s Law is important because out of all the gates,

NANDs are the cheapest to fabricate.
• a Sum-of-Products circuit could be converted into an equivalent

circuit of NAND gates:

• This is all based on de Morgan’s Law:

51

Reducing boolean expressions

• Assuming logic specs at left,
we get the following:

A B C Y

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

Y = A·B·C + A·B·C + A·B·C + A·B·C

m3 + m4 + m6 + m7

52

Warming up…

A ∙ B + A ∙ B = A

Reduce by combing two terms that
differ by a single literal.

53

Y = A·B·C + A·B·C + A·B·C + A·B·C

Let’s reduce this

Combine the last two terms…

Y = A·B·C + A·B·C + A·B

Combine the middle two and the end two …

Y = B·C + A·C

There could be different ways of combining,
some are simpler than others. 54

How to get to the simplest expression?

Wait … What does “simplest” mean?

55

What is “simplest”?

• In this case, “simple” denotes the
lowest gate cost (G) or the lowest
gate cost with NOTs (GN).

• To calculate the gate cost, simply
add all the gates together (as well
as the cost of the NOT gates, in
the case of the GN cost).

A

Y

¬B

¬C

A

B

C

A

B

¬C

¬A

B

C
G(Y) =

GN(Y) =

5
8

Don’t count ¬C twice!

56

Find the simplest expression, systematically.

Karnaugh maps

57

Reducing boolean expressions
• How do we find the “simplest” expression for a circuit?

• Technique called Karnaugh maps (or K-maps).

• Karnaugh maps are a 2D grid of minterms, where adjacent
minterm locations in the grid differ by a single literal.

• Values of the grid are the output for that minterm.

B·C B·C B·C B·C

A 0 0 1 0

A 1 0 1 1

58

A B C Y

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

Y = A·B·C + A·B·C + A·B·C + A·B·C

Compare these…

B·C B·C B·C B·C

A 0 0 1 0

A 1 0 1 1

59

Karnaugh maps

• Karnaugh maps can be of
any size and have any
number of inputs.

• Since adjacent
minterms only differ by a
single literal, they can be
combined into a single
term that omits that value.

C·D C·D C·D C·D

A·B mo m1 m3 m2

A·B m4 m5 m7 m6

A·B m12 m13 m15 m14

A·B m8 m9 m11 m10

60

Using Karnaugh maps

• Once Karnaugh maps are created, draw boxes over groups of
high output values.
• Boxes must be rectangular and aligned with map.

• Number of values contained within each box must be a power of 2.

• Boxes may overlap with each other.

• Boxes may wrap across edges of map.

B·C B·C B·C B·C

A 0 0 1 0

A 1 0 1 1

61

B·C B·C B·C B·C

A 0 1 1 0

A 0 0 1 0

Must be rectangle!

62

B·C B·C B·C B·C

A 0 1 1 0

A 0 0 1 0

Two boxes
overlapping each
other is fine.

63

B·C B·C B·C B·C

A 0 1 1 1

A 0 0 0 0

Number of value
contained must be
power of 2.

64

B·C B·C B·C B·C

A 0 1 1 1

A 0 0 0 0

1 is a power of 2
1 = 20

65

B·C B·C B·C B·C

A 0 1 1 0

A 0 1 1 0

Rectangle, with
power of 2 entries

66

B·C B·C B·C B·C

A 0 1 0 0

A 0 0 1 0

Must be aligned
with map.

67

B·C B·C B·C B·C

A 0 0 0 0

A 1 0 0 1

Wrapping across
edge is fine.

68

So… how to find the smallest expression

B·C B·C B·C B·C

A 0 0 1 0

A 0 0 1 0

Minterms in one box can be combined
into one term

A·B·C + A·B·C = B·C

69

So… how to find smallest expression

The simplest expression corresponds to the smallest
number of boxes that cover all the high values (1’s).

B·C B·C B·C B·C

A 0 0 1 0

A 1 0 1 1

B·C B·C B·C B·C

A 0 0 1 0

A 1 0 1 1

70

So… how to find smallest expression

And each box should be as large as possible.

B·C B·C B·C B·C

A 0 1 1 1

A 0 0 1 1

B·C B·C B·C B·C

A 0 1 1 1

A 0 0 1 1

71

Y = A·B·C + A·B·C + A·B·C + A·B·C

B·C B·C B·C B·C

A 0 0 1 0

A 1 0 1 1

Y = A·B·C + A·B·C + A·B

Y = B·C + A·C

B·C B·C B·C B·C

A 0 0 1 0

A 1 0 1 1

72

K-map: the steps

Given a complicated expression
1.Convert it to Sum-Of-Minterms
2.Draw the 2D grid
3.Mark all the high values (1’s), according to which

minterms are in the SOM.
4.Draw boxes that cover 1’s
5.Find the smallest set of boxes that cover all 1’s
6.Write out the simpfied result according to the boxes

found.

73

Everything can be done using Maxterms, too

• Can also use this technique to
group maxterms together as
well.

• Karnaugh maps with maxterms
involves grouping the zero
entries together, instead of
grouping the entries with one
values.

C+D C+D C+D C+D

A+B Mo M1 M3 M2

A+B M4 M5 M7 M6

A+B M12 M13 M15 M14

A+B M8 M9 M11 M10

74

Circuit creation – the whole flow

1.Understand desired behaviour

2.Write the truth table based on
the behaviour

3.Write the SOM (or POM) of that
truth table

4. Simplify the SOM using K-map

5.Translate the simplified logic
expression into circuit with gates

75

Today we learned

• How to create a logic circuit from scratch, given a desired digital
behaviour.

• Minterm & Maxterm

• K-Map use to reduce the circuit

Next Week:
• Logical Devices

76

CSCB58:
Computer Organization

Prof. Gennady Pekhimenko

University of Toronto

Fall 2020

The content of this lecture is adapted from the lectures of
Larry Zheng and Steve Engels

