
CSCB58 Lab 10: Arrays and Functions

1 Introduction

Last week, we built branches and loops in MIPS assembly using labels and
branches. This week, we will write some programs with arrays and functions.
You might have already attempted to work with these as part of your project,
but if you haven’t then this will be a good starting point.

This week’s lab assumes that you completed all of the material from last
week. If you did not get the programs working last week, finish them before
this lab.

Note: Your will submit your solution code to Quercus before
the start of your practical section, please read the “Summary of
TODOs” section for more details.

2 Arrays

As we discussed in the lecture, arrays are declared in the .data section of
the assembly code. For example, the following segment of code declares an
array of 6 integers.

.data

array1: .word 5, 8, 3, 4, 7, 2

The array data locates in the memory, so in order to access the elements
of the array, we need to perform memory access instructions such as lw and
sw. To access each element, you need to correctly calculate the memory
address of it before accessing it. The basic way to compute the memory
address of an element is “base + offset”, where base is the address of the
first element of the array (value of “array1”), and offset is the index of
the element multiplied by the size (in bytes) of each element of the array.
Read the lecture slides for more details.

For your first task, write some code that iterates through the above array
(array1) and computes the product of all elements in the array, and then
prints it out to the screen. You can re-use some of the code from previous
labs if you need. Be prepared to explain your code to your TA.

1

3 One-Level Function Calls

Just like any high level programming language, modularization (separating
code into well defined procedures/functions) is an important idea for assem-
bly programming. Conceptually, making function call is actually simple: we
need to “jump” to another portion of code (the function body) then start
executing the instructions in the function body. When we reach the end of
that function, another “jump” is needed to go back to the caller.

In terms of passing arguments and return values, it can be done in many
different ways, therefore certain conventions need to be defined to make sure
that all programmers in the same project are on the same page. In this lab,
we use a very simple convention (which is different from what we discussed
in the lecture): Use registers $a0 and $a1 for storing the function arguments,
and use $v0 for storing the return value.

Download starter code lab10b.s from the following link:

https://cscb58f20.ml/labs/lab10b.s

The starter code is trying to implement the following piece of pseu-
docode. Read the comments in the starter code and complete the TODO
parts.

def main():

A = input("Enter a value for A")

B = input("Enter a value for B")

print "Before function"

print "A + B = ", doAdd(A, B)

print "A - B = ", doSub(A, B)

def doAdd(A, B):

return A + B

def doSub(A, B):

return A - B

Note: You are NOT allowed to add any label to your code.

4 Multi-Level Function Calls: Recursion

Things get more interesting when we have multi-level function calls, espe-
cially when you are implementing a recursive function. Since the return
address is automatically stored in the $ra register when jal is executed,

2

when a function calls another function, the content of $ra will be overwrit-
ten and the calling function’s return address will be forgotten. To avoid this,
we need to remember the return address of each level of function somewhere,
namely, the stack.

We can access the stack using the stack pointer value stored in register
$sp. To push a word onto the stack, you can do:

addi $sp, $sp, -4 # move the stack pointer to increase stack size

sw $r, 0($sp) # put the value in $r on the allocated space

To pop a word from the stack:

lw $r, 0($sp) # load the word at the top of the stack

addi $sp, $sp, 4 # decrease the size of the stack

Other things also need to be remembered on and passed through the
stack, such as the argument passed to the function being called, the return
value of a function call, and the temporary values which need to be used
after returning from the recursive call. The orders of the pushes and pops
need to be design carefully so that you are always correctly passing and
restoring the value that you expect.

Create a new file named lab10c.s and implement in assembly the follow-
ing piece of pseudocode, which involves a recursive function mystery. This
task could take longer time than others to finish, so you might want to start
working on it earlier than usual. You may refer to the function examples in
class for explanations of how to deal with the stack and functions.

def main():

n = input("Enter a number: ")

print("The result is:", mystery(n))

def mystery(n):

if n == 0:

return 0

return mystery(n-1) + 2*n - 1

Once your get it to work, be ready to answer questions about how your
code works. In particular, try to break your code by passing a very large
input value n. How large does n need to be to cause an error? What kind
of error is raised?

3

5 Summary of TODOs

Below is a short summary of the steps to be completed for this lab:

1. Read through the handout and get familiar with the procedure, and
already start working early on the code to be prepared since the tasks
are more challenging than previous labs.

2. Create and complete lab10a.s which implements the Array code.

3. Complete lab10b.s for one-level function calls.

4. Create and complete lab10c.s which implements the pseudocode with
the recursive function mystery.

5. Before your ;ab session, submit your lab10a.s, lab10b.s and lab10c.s

to Quercus.

6. Show up to your lab and be prepared to answer questions on how your
code works.

Evaluation (5 marks in total):

1. 1 marks for part (a)

2. 1.5 marks for part (b)

3. 2.5 marks for part (c)

Congratulations! You just finished your final lab of CSCB58! Thank your
TAs for their work throughout the term!

4

