
CSCB58 Lab 9: Control Flows

1 Introduction

When programming in a high-level language like Python, Java, or even C, we
use three main control-flow constructs: branches, loops, and function calls.
Last week, we learned how to create programs in assembly for the MIPS
architecture, but these programs did not include any “control”. This week,
we will write programs with branches and loops to see how these constructs
are implemented in assembly. When we finish this lab, we hope you will
have a better appreciation for the structures a high level language provides!

Like last week, take your time on this lab and ask your neighbors or the
TAs questions whenever you see something you don’t understand. We will
be learning how to write functions next week, so it’s important that you
be comfortable with the syntax for system calls and branch and memory
instructions. If you need a reference, please check the extra resources posted
on the course webpage. I’ve found Larus’s guide particularly useful for a high
level overview.

This week’s lab assumes that you completed all of the material from last
week. Make sure to complete the tasks in last week’s lab before lab time
this week.

Note: Your will submit your solution code to Quercus before
the start of your practical section, please read the “Summary of
TODOs” section for more details.

2 If-Else

An If-Else statement (or branch or conditional statement) is a control struc-
ture that creates conditionally executed code. The structure relies on a
predicate – an expression that evaluates to a Boolean value – True or False.
The if is always followed by a block that is executed when the predicate is
True. This is the Then block. The Then block is optionally followed by an
Else block that is executed if the predicate is False.

In assembly, If-Else is implemented using labels and branch operations.
If necessary, the predicate is simplified using normal arithmetic operators.
Then, it is evaluated using a branch. The branch uses a label to specify
what the next instruction to execute should be if the predicate evaluates
to True. If it evaluates to False, then the next instruction is executed (as
normal). Here is an assembly implementation of a branch:

1

if x < 5 {

y = 1

}

else {

y = 2

}

IF: # This label isn’t required but is added for clarity.

addi $t1, $t0, -4 # Prepare to evaluate x - 4 <= 0.

bgtz $t1, ELSE # Branch to the label ELSE if the predicate is False.

THEN: # This label isn’t required but is added for clarity.

li $t2, 1

j DONE

ELSE:

li $t2, 2

DONE: # This label marks the end of the If-Else.

Note that the predicate is evaluated in an odd way. Branches in MIPS
can only compare if two values are equal (beq) or not equal (bne), if one
value is <= 0 (blez), or if one value is > 0 (bgtz). Some arithmetic has to
be done to make most comparisons into comparisons to zero. Furthermore,
the branch in the example checks whether the predicate is False and then
branches to the Else block. If you want to change the branch to be checking
whether the condition is True, you’ll need to swap the positions of the THEN
and ELSE blocks. To better understand the flow, use the flowchart technique
that we used in the lecture (see Week 9 lecture slides).

TODO #1: Make a copy of your program from last week’s lab, which
prompted the user for numbers. Name the file lab9a.s. Modify that pro-
gram to check whether the number provided by the user is an odd number or
an even number. If the user input is an odd number, print “THIS IS ODD”;
otherwise print “THIS IS EVEN”. (Hint : use andi to check if a number is
odd or even.)

3 Loops

Loops are very similar to branches. If we start with a branch with a Then
block and no Else block, then the difference is that we name the Then block

2

the loop’s body and may execute it multiple times. This means that the
bottom of the Then block is an unconditional branch back to the top of the
loop. For example:

x = 0

while x < 5 {

x = x + 1

}

LOOPINIT: # Many loops have an initialization section.

li $t0, 0

WHILE: # The loop checks the condition, then evaluates the body.

addi $t1, $t0, -4

bgtz $t1, DONE

addi $t0, $t0, 1

j WHILE

DONE: # This label marks the end of the loop.

This code breaks the loop into three parts. First, the initialization block
sets up loop variables. Second, the loop’s predicate is evaluated, and if the
predicate is false, control jumps to the code after the loop. Third, the loop
body is evaluated, and an unconditional branch is made to the top of the
loop.

TODO #2: Make a copy of lab9a.s and name it lab9b.s. Modify
your program so that it repeatedly asks the user for input until the user
provides an even number; or if the user has entered odd numbers for N
times, then print “TOO MANY TIMES” and exit. Make N a parameter
in the .data section with value 5. (Hint: Use the .word keyword to create
space for an integer. Use lw to load the word into a register.)

4 TODO #3: Product

Write a new program lab9c.s that first asks the user for an integer N . N
represents the number of integers to be multiplied. After getting a legal value
N , the program asks for an integer N times and then prints their product.
(You may, for simplicity, assume that the user only provides positive integers
and their product is small enough to be represented by 32 bits.)

3

5 Summary of TODOs

Below is a short summary of the steps to be completed for this lab:

1. Read through the handout and get familiar with the procedure.

2. Implement the If-Else program that checks parity.

3. Implement the Loop program that promotes until getting an even num-
ber.

4. Implement the Product program.

5. Submit your lab9a.s, lab9b.s and lab9c.s to Quercus. You must
submit the files before your practical session with the TA.

6. Finally, during the practical session demonstrate all 3 pieces of code
to your TA, and answer any questions they ask.

Evaluation (5 marks in total):

1. 1 mark: If-else

2. 1 mark: Loop

3. 2 marks: Product

4. 1 mark: Explaining your code to your TA

4

