
CSCB58 Lab 6: Register Files

1 Introduction

This week, we’re working with larger-scale devices composed of multiple indi-
vidual components. The goal of the lab, similar to Lab 3, is to become more
comfortable with high-level design – programming with hardware devices,
rather than mathematical specification using gates. In this lab, you’ll also
explore the use of control bits in devices, and the use of buses. A bus is
simply a wire containing multiple bits.

PRELAB REPORT: This lab requires the submission of a prelab
report to Quercus to by the start of your lab section. The deadline
shown on Quercus may not apply to you. Your TA will access your prelab
submission during the lab and ask you about it.

2 Multi-Bit (Parallel) Registers

A register is a device that stores a value. In reality, registers (and register
files) are often created out of SRAM cells (we have not covered these), but
for simplicity, you can imagine it being built out of D flip-flops. A 4-bit
register stores 4 bits in “parallel” (you can imagine each D flip-flop handling
one bit of the input and output). We will not be creating this component,
and instead will be using the built-in Register, but if you feel motivated
you can try building it from scratch for fun.

In addition to the clock input, registers take in a write enable (WE)
input. It is an example of a “control” input – it determines whether or not
the register is to accept input. When write enable is high, and the clock

goes high, the register stores the input. If either is low, the register maintains
its current state. (Recall that the flip-flop is an edge-triggered device, so the
input value is stored on the positive edge of the clock.)

3 Design and Implement a 4-Register 4-Bit Regis-
ter File

A single register can only hold a single value, and a computer will need more
storage. (Most processors have 32 or more.) The register file that you will

1



build for the lab is an array of registers that allows one register to be read
from (at any time) and one register to be written to (on the positive edge of
the clock). It will be built using Logisim-Evolution’s built in Multiplexer,
Demultiplexer and Register blocks.

Your register file will contain 4 registers (referenced by the numbers 0 to
3). Your register file should accept a 4-bit data input and produce a 4-bit
data output. It also requires a clock, enable, and two 2-bit select inputs. All
four of the latter inputs are “control” inputs. The first select is a read select:
the value of the input indicates which of the four registers is the source of the
register file’s output. The second select is a write select: the value of the
input determines which of the four registers will accept input. Like a regis-
ter, the clock and enable inputs determine if and when a value is to be stored.

Here are two questions to consider as you build your register file:

• All four registers will be providing output at the same time. How do
you choose one to be the output for the whole register file? What
bit-width must the devices that chooses have?

• Only one register should store the input value on the positive edge of
the clock. Here are two options, only one of which is correct: you
could use a 1-bit demux to send the enable bit to only one register,
or you could use a 4-bit demux to send the input to only one register.
Hint: Remember that a demux sends the input value to the selected
output line. The other output lines will have the value 0.

PRELAB REPORT: For the prelab report, show the schematics for
the register file using high level blocks (registers, muxes, etc). Be sure to
indicate which wires and inputs are buses and their “width” (number of bits).

For the Logisim implementation of your circuit, be to use the multi-bit
components instead of having 4 data wires for input / output. Refer to
the Logisim-Evolution reference section 3 for more help, but the relevant
properties are Data Bits and Select Bits to customize the components.

In your lab session, your TA will ask you questions on how you have de-
signed your register files, and then you need to demonstrate the functionality
of your circuit.

As always, if you have any questions on the lab not addressed by the
video overview released at the end of the week, feel free to ask us on Piazza
and we’ll do out best to clarify any ambiguities.

2



4 Summary of TODOs

1. Before the lab, read through the lab handout. Complete and submit
the PRELAB REPORT with the following information:

• Your name and student number.

• The circuit diagram of the register file.

2. In the lab, show the TA your design and convince them that it will
work.

3. Once convinced the register file works, demonstrate it to your TA.

Evaluation (5 marks in total):

• 3 mark for the prelab report including the register design.

• 2 mark for working register file in Logisim-Evolution.

For the next and final Logisim-Evolution lab, we’ll combine a register
file with a simple instruction decoder and ALU, to build the datapath and
control unit for a simple processor that you can program yourself!

3


