
CSC 2224: Parallel Computer
Architecture and Programming

Memory Consistency &
Cache Coherence

Prof. Gennady Pekhimenko

University of Toronto

Fall 2021

The content of this lecture is adapted from the lectures of
Onur Mutlu @ CMU

Please, provide your feedback!

• 10 mins

2

Reviews: Memory Consistency

• Suggested Readings:

– Lamport, “How to Make a Multiprocessor Computer
That Correctly Executes Multiprocess Programs,”
IEEE Transactions on Computers, 1979 (less than 2
pages)

– Boehm et al., “Foundations of the C++ Concurrency
Memory Model”, PLDI 2008 (11 pages)

3

Memory Ordering in
Multiprocessors

4

Ordering of Operations
• Operations: A, B, C, D

– In what order should the hardware execute (and report the
results of) these operations?

• A contract between programmer and microarchitect

– Specified by the ISA

• Preserving an “expected” (more accurately, “agreed upon”) order
simplifies programmer’s life

– Ease of debugging; ease of state recovery, exception handling

• Preserving an “expected” order usually makes the hardware
designer’s life difficult

– Especially if the goal is to design a high performance
processor: Load-store queues in out of order execution

5

Single Processor Ordering
• Specified by the von Neumann model

• Sequential order

– Hardware executes the load and store operations in the order
specified by the sequential program

• Out-of-order execution does not change the semantics

– Hardware retires (reports to software the results of) the load
and store operations in the order specified by the sequential
program

• Advantages: 1) Architectural state is precise within an execution.
2) Architectural state is consistent across different runs of the
program → Easier to debug programs

• Disadvantage: Preserving order adds overhead, reduces
performance

6

Dataflow Processor Ordering
• A memory operation executes when its operands are ready

• Ordering specified only by data dependencies

• Two operations can be executed and retired in any order if they
have no dependency

• Advantage: Lots of parallelism → high performance

• Disadvantage: Order can change across runs of the same
program → Very hard to debug

7

MIMD Processor Ordering

• Each processor’s memory operations are in sequential order with
respect to the “thread” running on that processor (assume each
processor obeys the von Neumann model)

• Multiple processors execute memory operations concurrently

• How does the memory see the order of operations from all
processors?

– In other words, what is the ordering of operations across
different processors?

8

Why Does This Even Matter?

• Ease of debugging

– It is nice to have the same execution done at different times
have the same order of memory operations

• Correctness

– Can we have incorrect execution if the order of memory
operations is different from the point of view of different
processors?

• Performance and overhead

– Enforcing a strict “sequential ordering” can make life harder
for the hardware designer in implementing performance
enhancement techniques (e.g., OoO execution, caches)

9

Protecting Shared Data
• Threads are not allowed to update shared data concurrently

– For correctness purposes

• Accesses to shared data are encapsulated inside
critical sections or protected via synchronization constructs
(locks, semaphores, condition variables)

• Only one thread can execute a critical section at
a given time

– Mutual exclusion principle

• A multiprocessor should provide the correct execution of
synchronization primitives to enable the programmer to protect
shared data

10

Supporting Mutual Exclusion

• Programmer needs to make sure mutual exclusion
(synchronization) is correctly implemented

– We will assume this

– But, correct parallel programming is an important topic

– Reading: Dijkstra, “Cooperating Sequential Processes,” 1965.

• Programmer relies on hardware primitives to support correct
synchronization

• If hardware primitives are not correct (or unpredictable),
programmer’s life is tough

• If hardware primitives are correct but not easy to reason about or
use, programmer’s life is still tough

11

12

Protecting Shared
Data

Assume P1 is in critical section.

Intuitively, it must have executed A,

which means F1 must be 1 (as A happens before B),

which means P2 should not enter the critical section.

A Question
• Can the two processors be in the critical section at the same time

given that they both obey the von Neumann model?

• Answer: yes

13

14

Both Processors in Critical Section

15

16

How Can We Solve The Problem?

• Idea: Sequential consistency

• All processors see the same order of operations to memory

• i.e., all memory operations happen in an order (called the global
total order) that is consistent across all processors

• Assumption: within this global order, each processor’s operations

appear in sequential order with respect to its own operations.

17

Sequential Consistency
Lamport, “How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs,” IEEE Transactions on Computers,
1979

• A multiprocessor system is sequentially consistent if:

– the result of any execution is the same as if the operations of all
the processors were executed in some sequential order

AND

– the operations of each individual processor appear in this
sequence in the order specified by its program

• This is a memory ordering model, or memory model
• Specified by the ISA

18

Programmer’s Abstraction

• Memory is a switch that services one load or
store at a time form any processor

• All processors see the currently serviced load or
store at the same time

• Each processor’s operations are serviced in
program order

19

Sequentially Consistent Operation
• Potential correct global orders (all are correct):

• A B X Y

• A X B Y

• A X Y B

• X A B Y

• X A Y B

• X Y A B

• Which order (interleaving) is observed depends
on implementation and dynamic latencies

20

Consequences of Sequential Consistency

1. Within the same execution, all processors see the same global
order of operations to memory

→ No correctness issue

→ Satisfies the “happened before” intuition

2. Across different executions, different global orders can be
observed (each of which is sequentially consistent)

→ Debugging is still difficult (as order changes across runs)

21

Issues with Sequential Consistency?

• Nice abstraction for programming, but two issues:

– Too conservative ordering requirements

– Limits the aggressiveness of performance enhancement
techniques

• Is the total global order requirement too strong?

– Do we need a global order across all operations and all
processors?

– How about a global order only across all stores?

• Total store order memory model; unique store order
model

– How about enforcing a global order only at the boundaries of
synchronization? Relaxed/Acquire-release consistency model

22

Issues with Sequential Consistency?

Performance enhancement techniques that could make SC
implementation difficult

• Out-of-order execution

– Loads happen out-of-order with respect to each other and
with respect to independent stores

• Caching

– A memory location is now present in multiple places

– Prevents the effect of a store to be seen by other processors

23

Weaker Memory Consistency
• The ordering of operations is important when the order affects

operations on shared data → i.e., when processors need to
synchronize to execute a “program region”

• Weak consistency

– Idea: Programmer specifies regions in which memory
operations do not need to be ordered

– “Memory fence” instructions delineate those regions

• All memory operations before a fence must complete
before the fence is executed

• All memory operations after the fence must wait for the
fence to complete

• Fences complete in program order

– All synchronization operations act like a fence

24

Tradeoffs: Weaker Consistency
• Advantage

– No need to guarantee a very strict order of memory
operations

→ Enables the hardware implementation of performance
enhancement techniques to be simpler

→ Can be higher performance than stricter ordering

• Disadvantage

– More burden on the programmer or software (need to get
the “fences” correct)

• Another example of the programmer-microarchitect tradeoff

25

Cache Coherence

26

Shared Memory Model
• Many parallel programs communicate through shared memory

• Proc 0 writes to an address, followed by Proc 1 reading

– This implies communication between the two

• Each read should receive the value last written by anyone

– This requires synchronization (what does last written mean?)

• What if Mem[A] is cached (at either end)?

27

Proc 0
Mem[A] = 1

Proc 1
…

Print Mem[A]

Cache Coherence
• Basic question: If multiple processors cache the same block, how

do they ensure they all see a consistent state?

28

P1 P2

x

Interconnection Network

Main Memory

1000

The Cache Coherence Problem

29

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

1000

1000

The Cache Coherence Problem

30

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

ld r2, x

1000

1000 1000

The Cache Coherence Problem

31

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

add r1, r2, r4

st x, r1

ld r2, x

1000

10002000

The Cache Coherence Problem

32

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

add r1, r2, r4

st x, r1

ld r2, x

1000

10002000

ld r5, x

Should NOT

load 1000

Cache Coherence: Whose Responsibility?
• Software

– Can the programmer ensure coherence if caches are invisible to
software?

– What if the ISA provided a cache flush instruction?

• FLUSH-LOCAL A: Flushes/invalidates the cache block
containing address A from a processor’s local cache.

• FLUSH-GLOBAL A: Flushes/invalidates the cache block
containing address A from all other processors’ caches.

• FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.

• Hardware

– Simplifies software’s job

– One idea: Invalidate all other copies of block A when a processor
writes to it

33

A Very Simple Coherence Scheme
• Caches “snoop” (observe) each other’s write/read operations. If

a processor writes to a block, all others invalidate it from their
caches.

• A simple protocol:

34

◼ Write-through, no-
write-allocate
cache

◼ Actions: PrRd,
PrWr, BusRd,
BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--

(Non-)Solutions to Cache Coherence
• No hardware based coherence

– Keeping caches coherent is software’s responsibility

+ Makes microarchitect’s life easier

-- Makes average programmer’s life much harder

• need to worry about hardware caches to maintain
program correctness?

-- Overhead in ensuring coherence in software

• All caches are shared between all processors

+ No need for coherence

-- Shared cache becomes the bandwidth bottleneck

-- Very hard to design a scalable system with low-latency cache
access this way

35

Maintaining Coherence
• Need to guarantee that all processors see a consistent value (i.e.,

consistent updates) for the same memory location

• Writes to location A by P0 should be seen by P1 (eventually), and
all writes to A should appear in some order

• Coherence needs to provide:

– Write propagation: guarantee that updates will propagate

– Write serialization: provide a consistent global order seen by
all processors

• Need a global point of serialization for this store ordering

36

Hardware Cache Coherence

• Basic idea:

– A processor/cache broadcasts its write/update to a
memory location to all other processors

– Another cache that has the location either updates
or invalidates its local copy

37

Coherence: Update vs. Invalidate
• How can we safely update replicated data?

– Option 1 (Update protocol): push an update to all copies

– Option 2 (Invalidate protocol): ensure there is only one copy
(local), update it

• On a Read:
– If local copy isn’t valid, put out request

– (If another node has a copy, it returns it, otherwise memory
does)

38

Update vs. Invalidate (2)
• On a Write:

– Read block into cache as before
Update Protocol:

– Write to block, and simultaneously broadcast written data to
sharers

– (Other nodes update their caches if data was present)
Invalidate Protocol:

– Write to block, and simultaneously broadcast invalidation of
address to sharers

– (Other nodes clear block from cache)

39

Update vs. Invalidate Tradeoffs
• Which do we want?

– Write frequency and sharing behavior are critical

• Update

+ If sharer set is constant and updates are infrequent, avoids
the cost of invalidate-reacquire (broadcast update pattern)

- If data is rewritten without intervening reads by other cores,
updates were useless

- Write-through cache policy ➔ bus becomes bottleneck

• Invalidate

+ After invalidation broadcast, core has exclusive access rights

+ Only cores that keep reading after each write retain a copy

- If write contention is high, leads to ping-ponging (rapid
mutual invalidation-reacquire)

40

Two Cache Coherence Methods
– How do we ensure that the proper caches are updated?

– Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]

• Bus-based, single point of serialization for all requests

• Processors observe other processors’ actions
– E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this

and invalidates its own copy of A

– Directory [Censier and Feautrier, IEEE ToC 1978]

• Single point of serialization per block, distributed among
nodes

• Processors make explicit requests for blocks

• Directory tracks ownership (sharer set) for each block

• Directory coordinates invalidation appropriately
– E.g.: P1 asks directory for exclusive copy, directory asks P0 to

invalidate, waits for ACK, then responds to P1

41

Directory Based
Cache Coherence

42

Directory Based Coherence
• Idea: A logically-central directory keeps track of where the copies

of each cache block reside. Caches consult this directory to
ensure coherence.

• An example mechanism:

– For each cache block in memory, store P+1 bits in directory

• One bit for each cache, indicating whether the block is in
cache

• Exclusive bit: indicates that a cache has the only copy of
the block and can update it without notifying others

– On a read: set the cache’s bit and arrange the supply of data

– On a write: invalidate all caches that have the block and reset
their bits

– Have an “exclusive bit” associated with each block in each
cache 43

Directory Based Coherence Example
(I)

44

Directory Based Coherence Example
(I)

45

Snoopy Cache Coherence

46

Snoopy Cache Coherence
• Idea:

– All caches “snoop” all other caches’ read/write requests and
keep the cache block coherent

– Each cache block has “coherence metadata” associated with it
in the tag store of each cache

• Easy to implement if all caches share a common bus

– Each cache broadcasts its read/write operations on the bus

– Good for small-scale multiprocessors

– What if you would like to have a 1000-node multiprocessor?

47

48

A Simple Snoopy Protocol

• Caches “snoop” (observe) each other’s write/read
operations

• A simple protocol:

49

◼ Write-through, no-
write-allocate
cache

◼ Actions: PrRd,
PrWr, BusRd,
BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--

A More Sophisticated Protocol: MSI

• Extend single valid bit per block to three states:

– M(odified): cache line is only copy and is dirty

– S(hared): cache line is one of several copies

– I(nvalid): not presentRead miss makes a Read request on bus,
transitions to S

• Write miss makes a ReadEx request, transitions to M state

• When a processor snoops ReadEx from another writer, it must
invalidate its own copy (if any)

• S→M upgrade can be made without re-reading data from
memory (via Invalidations)

50

MSI State Machine

51

M

S I

BusRdX/--

[Culler/Singh96]

PrRd/--
BusRd/--

PrRd/BusRd

PrWr/BusRdX

PrWr/BusRdX

BusRdX/Flush

PrRd/--
PrWr/--

BusRd/Flush

ObservedEvent/Action

The Problem with MSI
• A block is in no cache to begin with

• Problem: On a read, the block immediately goes to “Shared”
state although it may be the only copy to be cached (i.e., no
other processor will cache it)

• Why is this a problem?

– Suppose the cache that read the block wants to write to it at
some point

– It needs to broadcast “invalidate” even though it has the only
cached copy!

– If the cache knew it had the only cached copy in the system, it
could have written to the block without notifying any other
cache → saves unnecessary broadcasts of invalidations

52

The Solution: MESI

• Idea: Add another state indicating that this is the only cached
copy and it is clean.

– Exclusive state

• Block is placed into the exclusive state if, during BusRd, no other
cache had it

– Wired-OR “shared” signal on bus can determine this:
snooping caches assert the signal if they also have a copy

• Silent transition Exclusive→Modified is possible on write

53

54

55

MESI State Machine

PrWr/BusRdX

PrRd (S’)/BusRd

PrRd (S)/BusRd

PrWr/BusRdX

PrWr/--

BusRd/ $ Transfer

BusRd/Flush

BusRdX/Flush (all incoming)

MESI State Machine

56

M

E

S

I

[Culler/Singh96]

Intel Pentium Pro

57
Slide credit: Yale Patt

Snoopy Invalidation Tradeoffs
• Should a downgrade from M go to S or I?

– S: if data is likely to be reused (before it is written to by another
processor)

– I: if data is likely to be not reused (before it is written to by another)

• Cache-to-cache transfer
– On a BusRd, should data come from another cache or memory?
– Another cache

• may be faster, if memory is slow or highly contended

– Memory
• Simpler: no need to wait to see if cache has data first
• Less contention at the other caches
• Requires writeback on M downgrade

• Writeback on Modified->Shared: necessary?
– One possibility: Owner (O) state (MOESI protocol)

• One cache owns the latest data (memory is not updated)
• Memory writeback happens when all caches evict copies

58

The Problem with MESI

• Shared state requires the data to be clean

– i.e., all caches that have the block have the up-to-date copy
and so does the memory

• Problem: Need to write the block to memory when BusRd
happens when the block is in Modified state

• Why is this a problem?

– Memory can be updated unnecessarily → some other
processor may want to write to the block again while it is
cached

59

Improving on MESI

• Idea 1: Do not transition from M→S on a BusRd. Invalidate the
copy and supply the modified block to the requesting processor
directly without updating memory

• Idea 2: Transition from M→S, but designate one cache as the
owner (O), who will write the block back when it is evicted

– Now “Shared” means “Shared and potentially dirty”

– This is a version of the MOESI protocol

60

Tradeoffs in Sophisticated Cache Coherence
Protocols

• The protocol can be optimized with more states and
prediction mechanisms to

+ Reduce unnecessary invalidates and transfers of
blocks

• However, more states and optimizations

-- Are more difficult to design and verify (lead to more
cases to take care of, race conditions)

-- Provide diminishing returns

61

Snoopy Cache vs. Directory Coherence

Snoopy Cache

+ Miss latency (critical path) is short: miss → bus transaction to
memory

+ Global serialization is easy: bus provides this already (arbitration)

+ Simple: adapt bus-based uniprocessors easily

- Relies on broadcast messages to be seen by all caches (in same
order):

→ single point of serialization (bus): not scalable

→ need a virtual bus (or a totally-ordered interconnect)

62

Snoopy Cache vs. Directory Coherence

Directory

- Adds indirection to miss latency (critical path): request → dir. →
mem.

- Requires extra storage space to track sharer sets

Can be approximate (false positives are OK)

- Protocols and race conditions are more complex (for high-
performance)

+ Does not require broadcast to all caches

+ Exactly as scalable as interconnect and directory storage
(much more scalable than bus)

63

CSC 2224: Parallel Computer
Architecture and Programming

Memory Consistency &
Cache Coherence

Prof. Gennady Pekhimenko

University of Toronto

Fall 2021

The content of this lecture is adapted from the lectures of
Onur Mutlu @ CMU

