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Reviews: Memory Consistency

• Suggested Readings:

– Lamport, “How to Make a Multiprocessor Computer 
That Correctly Executes Multiprocess Programs,”
IEEE Transactions on Computers, 1979 (less than 2 
pages)

– Boehm et al., “Foundations of the C++ Concurrency 
Memory Model”, PLDI 2008 (11 pages)
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Memory Ordering in 
Multiprocessors
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Ordering of Operations
• Operations: A, B, C, D

– In what order should the hardware execute (and report the 
results of) these operations?

• A contract between programmer and microarchitect

– Specified by the ISA

• Preserving an “expected” (more accurately, “agreed upon”) order 
simplifies programmer’s life

– Ease of debugging; ease of state recovery, exception handling

• Preserving an “expected” order usually makes the hardware 
designer’s life difficult

– Especially if the goal is to design a high performance 
processor: Load-store queues in out of order execution
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Single Processor Ordering
• Specified by the von Neumann model

• Sequential order

– Hardware executes the load and store operations in the order 
specified by the sequential program

• Out-of-order execution does not change the semantics

– Hardware retires (reports to software the results of) the load 
and store operations in the order specified by the sequential 
program

• Advantages: 1) Architectural state is precise within an execution. 
2) Architectural state is consistent across different runs of the 
program → Easier to debug programs

• Disadvantage: Preserving order adds overhead, reduces 
performance
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Dataflow Processor Ordering
• A memory operation executes when its operands are ready

• Ordering specified only by data dependencies

• Two operations can be executed and retired in any order if they 
have no dependency

• Advantage: Lots of parallelism → high performance

• Disadvantage: Order can change across runs of the same 
program → Very hard to debug
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MIMD Processor Ordering

• Each processor’s memory operations are in sequential order with 
respect to the “thread” running on that processor (assume each 
processor obeys the von Neumann model)

• Multiple processors execute memory operations concurrently

• How does the memory see the order of operations from all 
processors? 

– In other words, what is the ordering of operations across 
different processors?
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Why Does This Even Matter?

• Ease of debugging

– It is nice to have the same execution done at different times 
have the same order of memory operations

• Correctness

– Can we have incorrect execution if the order of memory 
operations is different from the point of view of different 
processors?

• Performance and overhead

– Enforcing a strict “sequential ordering” can make life harder 
for the hardware designer in implementing performance 
enhancement techniques (e.g., OoO execution, caches)
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Protecting Shared Data
• Threads are not allowed to update shared data concurrently

– For correctness purposes

• Accesses to shared data are encapsulated inside 
critical sections or protected via synchronization constructs 
(locks, semaphores, condition variables)

• Only one thread can execute a critical section at 
a given time

– Mutual exclusion principle

• A multiprocessor should provide the correct execution of 
synchronization primitives to enable the programmer to protect 
shared data
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Supporting Mutual Exclusion

• Programmer needs to make sure mutual exclusion 
(synchronization) is correctly implemented

– We will assume this 

– But, correct parallel programming is an important topic

– Reading: Dijkstra, “Cooperating Sequential Processes,” 1965.

• Programmer relies on hardware primitives to support correct 
synchronization

• If hardware primitives are not correct (or unpredictable), 
programmer’s life is tough

• If hardware primitives are correct but not easy to reason about or 
use, programmer’s life is still tough
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Protecting Shared 
Data

Assume P1 is in critical section.

Intuitively, it must have executed A, 

which means F1 must be 1 (as A happens before B), 

which means P2 should not enter the critical section.



A Question
• Can the two processors be in the critical section at the same time 

given that they both obey the von Neumann model?

• Answer: yes
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Both Processors in Critical Section
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How Can We Solve The Problem?

• Idea: Sequential consistency

• All processors see the same order of operations to memory

• i.e., all memory operations happen in an order (called the global 
total order) that is consistent across all processors

• Assumption: within this global order, each processor’s operations 

appear in sequential order with respect to its own operations.
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Sequential Consistency
Lamport, “How to Make a Multiprocessor Computer That Correctly 
Executes Multiprocess Programs,” IEEE Transactions on Computers, 
1979

• A multiprocessor system is sequentially consistent if:

– the result of any execution is the same as if the operations of all 
the processors were executed in some sequential order

AND

– the operations of each individual processor appear in this 
sequence in the order specified by its program

• This is a memory ordering model, or memory model
• Specified by the ISA
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Programmer’s Abstraction

• Memory is a switch that services one load or 
store at a time form any processor

• All processors see the currently serviced load or 
store at the same time

• Each processor’s operations are serviced in 
program order
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Sequentially Consistent Operation
• Potential correct global orders (all are correct):

• A B X Y

• A X B Y

• A X Y B

• X A B Y

• X A Y B

• X Y A B

• Which order (interleaving) is observed depends 
on implementation and dynamic latencies
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Consequences of Sequential Consistency

1. Within the same execution, all processors see the same global 
order of operations to memory

→ No correctness issue

→ Satisfies the “happened before” intuition

2. Across different executions, different global orders can be 
observed (each of which is sequentially consistent)

→ Debugging is still difficult (as order changes across runs)
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Issues with Sequential Consistency?

• Nice abstraction for programming, but two issues:

– Too conservative ordering requirements

– Limits the aggressiveness of performance enhancement 
techniques

• Is the total global order requirement too strong?

– Do we need a global order across all operations and all 
processors?

– How about a global order only across all stores?

• Total store order memory model; unique store order 
model

– How about enforcing a global order only at the boundaries of 
synchronization? Relaxed/Acquire-release consistency model
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Issues with Sequential Consistency?

Performance enhancement techniques that could make SC 
implementation difficult

• Out-of-order execution 

– Loads happen out-of-order with respect to each other and 
with respect to independent stores

• Caching 

– A memory location is now present in multiple places

– Prevents the effect of a store to be seen by other processors
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Weaker Memory Consistency
• The ordering of operations is important when the order affects 

operations on shared data → i.e., when processors need to 
synchronize to execute a “program region”

• Weak consistency

– Idea: Programmer specifies regions in which memory 
operations do not need to be ordered

– “Memory fence” instructions delineate those regions

• All memory operations before a fence must complete 
before the fence is executed

• All memory operations after the fence must wait for the 
fence to complete

• Fences complete in program order

– All synchronization operations act like a fence
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Tradeoffs: Weaker Consistency
• Advantage

– No need to guarantee a very strict order of memory 
operations

→ Enables the hardware implementation of performance     
enhancement techniques to be simpler 

→ Can be higher performance than stricter ordering

• Disadvantage

– More burden on the programmer or software (need to get 
the “fences” correct)

• Another example of the programmer-microarchitect tradeoff
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Cache Coherence
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Shared Memory Model
• Many parallel programs communicate through shared memory

• Proc 0 writes to an address, followed by Proc 1 reading

– This implies communication between the two

• Each read should receive the value last written by anyone

– This requires synchronization (what does last written mean?)

• What if Mem[A] is cached (at either end)?
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Proc 0
Mem[A] = 1

Proc 1
…

Print Mem[A]



Cache Coherence 
• Basic question: If multiple processors cache the same block, how 

do they ensure they all see a consistent state?
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The Cache Coherence Problem
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The Cache Coherence Problem
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The Cache Coherence Problem
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The Cache Coherence Problem
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Cache Coherence: Whose Responsibility?
• Software

– Can the programmer ensure coherence if caches are invisible to 
software?

– What if the ISA provided a cache flush instruction?

• FLUSH-LOCAL A: Flushes/invalidates the cache block 
containing address A from a processor’s local cache. 

• FLUSH-GLOBAL A: Flushes/invalidates the cache block 
containing address A from all other processors’ caches. 

• FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.

• Hardware

– Simplifies software’s job

– One idea: Invalidate all other copies of block A when a processor 
writes to it
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A Very Simple Coherence Scheme
• Caches “snoop” (observe) each other’s write/read operations. If 

a processor writes to a block, all others invalidate it from their 
caches.

• A simple protocol:
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◼ Write-through, no-
write-allocate 
cache

◼ Actions: PrRd, 
PrWr, BusRd, 
BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--



(Non-)Solutions to Cache Coherence
• No hardware based coherence

– Keeping caches coherent is software’s responsibility

+ Makes microarchitect’s life easier

-- Makes average programmer’s life much harder 

• need to worry about hardware caches to maintain 
program correctness?

-- Overhead in ensuring coherence in software

• All caches are shared between all processors

+ No need for coherence

-- Shared cache becomes the bandwidth bottleneck

-- Very hard to design a scalable system with low-latency cache 
access this way
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Maintaining Coherence
• Need to guarantee that all processors see a consistent value (i.e., 

consistent updates) for the same memory location

• Writes to location A by P0 should be seen by P1 (eventually), and 
all writes to A should appear in some order

• Coherence needs to provide:

– Write propagation: guarantee that updates will propagate

– Write serialization: provide a consistent global order seen by 
all processors

• Need a global point of serialization for this store ordering
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Hardware Cache Coherence

• Basic idea:

– A processor/cache broadcasts its write/update to a 
memory location to all other processors

– Another cache that has the location either updates 
or invalidates its local copy
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Coherence: Update vs. Invalidate
• How can we safely update replicated data?

– Option 1 (Update protocol): push an update to all copies

– Option 2 (Invalidate protocol): ensure there is only one copy 
(local), update it

• On a Read:
– If local copy isn’t valid, put out request

– (If another node has a copy, it returns it, otherwise memory 
does)
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Update vs. Invalidate (2)
• On a Write:

– Read block into cache as before
Update Protocol:

– Write to block, and simultaneously broadcast written data to 
sharers

– (Other nodes update their caches if data was present)
Invalidate Protocol:

– Write to block, and simultaneously broadcast invalidation of 
address to sharers

– (Other nodes clear block from cache)
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Update vs. Invalidate Tradeoffs
• Which do we want?

– Write frequency and sharing behavior are critical

• Update

+ If sharer set is constant and updates are infrequent, avoids 
the cost of invalidate-reacquire (broadcast update pattern)

- If data is rewritten without intervening reads by other cores, 
updates were useless

- Write-through cache policy ➔ bus becomes bottleneck

• Invalidate

+ After invalidation broadcast, core has exclusive access rights

+ Only cores that keep reading after each write retain a copy

- If write contention is high, leads to ping-ponging (rapid 
mutual invalidation-reacquire)
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Two Cache Coherence Methods 
– How do we ensure that the proper caches are updated?

– Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]

• Bus-based, single point of serialization for all requests

• Processors observe other processors’ actions
– E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this 

and invalidates its own copy of A

– Directory [Censier and Feautrier, IEEE ToC 1978]

• Single point of serialization per block, distributed among 
nodes

• Processors make explicit requests for blocks

• Directory tracks ownership (sharer set) for each block

• Directory coordinates invalidation appropriately
– E.g.: P1 asks directory for exclusive copy, directory asks P0 to 

invalidate, waits for ACK, then responds to P1
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Directory Based 
Cache Coherence
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Directory Based Coherence
• Idea: A logically-central directory keeps track of where the copies 

of each cache block reside. Caches consult this directory to 
ensure coherence.

• An example mechanism:

– For each cache block in memory, store P+1 bits in directory

• One bit for each cache, indicating whether the block is in 
cache

• Exclusive bit: indicates that a cache has the only copy of 
the block and can update it without notifying others

– On a read: set the cache’s bit and arrange the supply of data 

– On a write: invalidate all caches that have the block and reset 
their bits

– Have an “exclusive bit” associated with each block in each 
cache 43



Directory Based Coherence Example 
(I)
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Directory Based Coherence Example 
(I)
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Snoopy Cache Coherence
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Snoopy Cache Coherence
• Idea: 

– All caches “snoop” all other caches’ read/write requests and 
keep the cache block coherent

– Each cache block has “coherence metadata” associated with it 
in the tag store of each cache

• Easy to implement if all caches share a common bus

– Each cache broadcasts its read/write operations on the bus

– Good for small-scale multiprocessors

– What if you would like to have a 1000-node multiprocessor?
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A Simple Snoopy Protocol

• Caches “snoop” (observe) each other’s write/read 
operations

• A simple protocol:
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◼ Write-through, no-
write-allocate 
cache

◼ Actions: PrRd, 
PrWr, BusRd, 
BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--



A More Sophisticated Protocol: MSI

• Extend single valid bit per block to three states:

– M(odified): cache line is only copy and is dirty

– S(hared): cache line is one of several copies

– I(nvalid): not presentRead miss makes a Read request on bus, 
transitions to S

• Write miss makes a ReadEx request, transitions to M state

• When a processor snoops ReadEx from another writer, it must 
invalidate its own copy (if any)

• S→M upgrade can be made without re-reading data from 
memory (via Invalidations)
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MSI State Machine
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M

S I

BusRdX/--

[Culler/Singh96]

PrRd/--
BusRd/--

PrRd/BusRd

PrWr/BusRdX

PrWr/BusRdX

BusRdX/Flush

PrRd/--
PrWr/--

BusRd/Flush

ObservedEvent/Action



The Problem with MSI
• A block is in no cache to begin with

• Problem: On a read, the block immediately goes to “Shared” 
state although it may be the only copy to be cached (i.e., no 
other processor will cache it)

• Why is this a problem?

– Suppose the cache that read the block wants to write to it at 
some point

– It needs to broadcast “invalidate” even though it has the only 
cached copy!

– If the cache knew it had the only cached copy in the system, it 
could have written to the block without notifying any other 
cache → saves unnecessary broadcasts of invalidations
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The Solution: MESI

• Idea: Add another state indicating that this is the only cached 
copy and it is clean.

– Exclusive state

• Block is placed into the exclusive state if, during BusRd, no other 
cache had it

– Wired-OR “shared” signal on bus can determine this: 
snooping caches assert the signal if they also have a copy

• Silent transition Exclusive→Modified is possible on write
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MESI State Machine



PrWr/BusRdX

PrRd (S’)/BusRd

PrRd (S)/BusRd

PrWr/BusRdX

PrWr/--

BusRd/ $ Transfer

BusRd/Flush

BusRdX/Flush (all incoming)

MESI State Machine
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[Culler/Singh96]



Intel Pentium Pro
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Snoopy Invalidation Tradeoffs
• Should a downgrade from M go to S or I?

– S: if data is likely to be reused (before it is written to by another 
processor)

– I: if data is likely to be not reused (before it is written to by another)

• Cache-to-cache transfer
– On a BusRd, should data come from another cache or memory?
– Another cache

• may be faster, if memory is slow or highly contended

– Memory
• Simpler: no need to wait to see if cache has data first
• Less contention at the other caches
• Requires writeback on M downgrade

• Writeback on Modified->Shared: necessary?
– One possibility: Owner (O) state (MOESI protocol)

• One cache owns the latest data (memory is not updated)
• Memory writeback happens when all caches evict copies
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The Problem with MESI

• Shared state requires the data to be clean 

– i.e., all caches that have the block have the up-to-date copy 
and so does the memory

• Problem: Need to write the block to memory when BusRd
happens when the block is in Modified state

• Why is this a problem?

– Memory can be updated unnecessarily → some other 
processor may want to write to the block again while it is 
cached
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Improving on MESI

• Idea 1: Do not transition from M→S on a BusRd. Invalidate the 
copy and supply the modified block to the requesting processor 
directly without updating memory

• Idea 2: Transition from M→S, but designate one cache as the 
owner (O), who will write the block back when it is evicted

– Now “Shared” means “Shared and potentially dirty”

– This is a version of the MOESI protocol
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Tradeoffs in Sophisticated Cache Coherence 
Protocols

• The protocol can be optimized with more states and 
prediction mechanisms to

+ Reduce unnecessary invalidates and transfers of 
blocks

• However, more states and optimizations 

-- Are more difficult to design and verify (lead to more 
cases to take care of, race conditions)

-- Provide diminishing returns
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Snoopy Cache vs. Directory Coherence

Snoopy Cache

+ Miss latency (critical path) is short: miss → bus transaction to 
memory

+ Global serialization is easy: bus provides this already (arbitration)

+ Simple: adapt bus-based uniprocessors easily

- Relies on broadcast messages to be seen by all caches (in same 
order): 

→ single point of serialization (bus): not scalable

→ need a virtual bus (or a totally-ordered interconnect)
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Snoopy Cache vs. Directory Coherence

Directory

- Adds indirection to miss latency (critical path): request → dir. →
mem.

- Requires extra storage space to track sharer sets

Can be approximate (false positives are OK)

- Protocols and race conditions are more complex (for high-
performance)

+ Does not require broadcast to all caches

+ Exactly as scalable as interconnect and directory storage
(much more scalable than bus)
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