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Outline

2. DRAM Internal Organization

— DRAM Cell
— DRAM Array
— DRAM Bank




DRAM Bank

How to build a DRAM bank
from a DRAM array?




DRAM Bank: Single DRAM Array?
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DRAM Bank: Collection of Arrays
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DRAM Operation: Summary

Row m, Col n

1. Enable row m

2. Access col n

3. Close row
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DRAM Chip Hierarchy

Collection of Banks 7
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Outline

1. What is DRAM?

2. DRAM Internal Organization

3. Problems and Solutions

— Latency (Tiered-Latency DRAM, HPCA 2013;
Adaptive-Latency DRAM, HPCA 2015)

— Parallelism (Subarray-level Parallelism, ISCA 2012)



Factors That Affect Performance

1. Latency

— How fast can DRAM serve a request?

2. Parallelism

— How many requests can DRAM serve in parallel?



DRAM Chip Hierarchy

Collection of Banks

Collection of Subarrays
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Outline

1. What is DRAM?

2. DRAM Internal Organization

3. Problems and Solutions

— Latency (Tiered-Latency DRAM, HPCA 2013;
Adaptive-Latency DRAM, HPCA 2015)

— Parallelism (Subarray-level Parallelism, ISCA 2012)
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Subarray Size vs. Access Latency

Shorter Bitlines => Faster access

/
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Smaller subarrays => lower access latency
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Subarray Size vs. Chip Area

Large Subarray Smaller Subarrays
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Smaller subarrays => larger chip area




Chip Area vs. Access Latency
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Chip Area vs. Access Latency

__-> 32 rows/subarray
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How to enable low latency without high area overhead?




New Proposal
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Tiered-Latency DRAM

- Higher access latency

Far Segment - Higher energy/access

+ Lower access latency

Near Segment
+ Lower energy/access

Map frequently accessed data to near segment




Results Summary
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Tiered-Latency DRAM:
A Low Latency and Low Cost DRAM
Architecture

Donghyuk Lee, Yoongu Kim, Vivek Seshadri,
Jamie Liu, Lavanya Subramanian, Onur Mutlu

Published in the proceedings of 19t |IEEE International
Symposium on

High Performance Computer Architecture 2013

20



DRAM Stores Data as Charge

DRAM cell

Three steps of
charge movement

1. Sensing
2. Restore
3. Precharge

Sense amplifier



DRAM Charge over Time
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Why does DRAM need the extra timing margin?



Two Reasons for Timing Margin

1. Process Variation

— DRAM cells are not equal

— Leads to extra timing margin for cells that can
store large amount of charge

2. Temperature Dependence



DRAM Cells are Not Equal
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Two Reasons for Timing Margin

1. Process Variation

— DRAM cells are not equal

— Leads to extra timing margin for cells that can
store large amount of charge

2. Temperature Dependence

— DRAM leaks more charge at higher temperature

— Leads to extra timing margin when operating at
low temperature




Charge Leakage «< Temperature
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DRAM Timing Parameters

* DRAM timing parameters are dictated by
the worst case

— The smallest cell with the smallest charge
in all DRAM products

— Operating at the highest temperature

* Large timing margin for the common case
- Can lower latency for the common case






Obs 1. Faster Sensing

Typical DIMM at 115 DIMM

Low Temperature characterization
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—> More charge = Faster sensing



Obs 2. Reducing Restore Time

Typical DIMM at 115 DIMM

Low Temperature characterization
Larger cell &

Less leakage = Read (tRAS)

Extra charge
37%

No need to fully Write (tWR)

‘ " " ' restore charge
XXX 54% |

No Errors

Typical DIMM at lower temperature
- More charge = Restore time reduction



Obs 3. Reducing Precharge Time

Typical DIMM at Sensing Half Precharge
Low Temperature

Empty
(0V)

Sense amplifier

Precharge ? — Setting bitline to half-full charge



Obs 3. Reducing Precharge Time

Access empty cell  Access full cell 115 DIMM
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Adaptive-Latency DRAM

e Keyidea
— Optimize DRAM timing parameters online

* Two components
— DRAM manufacturer profiles multiple sets of

reliable DRAM timing parametersfshiiIs=lals

temperatures for each DIMM

— System monitors 2 AN R gl ols =1kl {S uses appropriate

DRAM timing parameters




Real System Evaluation

Average

mprovement

Performance |
soplex
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copy
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intensive
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all-35-workload

AL-DRAM provides high performance
improvement, greater for multi-core workloads



Summary: AL-DRAM

e (QObservation

— DRAM timing parameters are dictated by the worst-case cell
(smallest cell at highest temperature)

 Our Approach: Adaptive-Latency DRAM (AL-DRAM)

— Optimizes DRAM timing parameters for the common case
(typical DIMM operating at low temperatures)

* Analysis: Characterization of 115 DIMMs

— Great potential to lower DRAM timing parameters (17 —
54%) without any errors

* Real System Performance Evaluation

— Significant performance improvement (14% for memory-
intensive workloads) without errors (33 days)



Adaptive-Latency DRAM: Optimizing
DRAM Timing for the Common-Case

Donghyuk Lee, Yoongu Kim,

Gennady Pekhimenko, Samira Khan, Vivek
Seshadri, Kevin Chang, and Onur Mutlu
Published in the proceedings of 21

International Symposium on High Performance
Computer Architecture 2015
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Outline

1. What is DRAM?
2. DRAM Internal Organization

3. Problems and Solutions
— Latency (Tiered-Latency DRAM, HPCA 2013;
Adaptive-Latency DRAM, HPCA 2015)

‘ — Parallelism (Subarray-level Parallelism, ISCA 2012)‘
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Parallelism: Demand vs. Supply

Demand Supply

Out-of-order
Execution

Multiple
Prefetchers Banks
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Increasing Number of Banks?

Adding more banks - Replication of shared structures

Replication - Cost
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Our Observation

Local to a subarray
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Subarray-Level Parallelism

SRR R AR
AR

+*
*

Row Address
Row Decoder

AR SR SR S A
LSRR SR AR SR S
LSRR SRR SR

TITTTYYY

w [ -
0 5
| -

© s
© Q
< o
2 2
o o
o o

Row Address Column Read/Write ¢




Subarray-Level Parallelism: Benefits

Two requests to
__.--------=-different subarrays

y
-
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‘ ‘ ‘ Data Access ‘ ‘ v
‘ ‘ Data Access ‘ ‘ ‘

Commodity DRAM

Data Access

Data Access

Subarray-Level Parallelism
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Results Summary
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A Case for Exploiting Subarray-Level
Parallelism (SALP) in DRAM

Yoongu Kim, Vivek Seshadri, Donghyuk Lee,
Jamie Liu, Onur Mutlu

Published in the proceedings of 39t

International Symposium on Computer Architecture
2012
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Review #5

Flipping Bits in Memory Without

Accessing Them
Yoongu Kim et al., ISCA 2014
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https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf

Review: Memory Latency Lags Behind
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Memory latency remains almost constant



We Need A Paradigm Shift To ...

* Enable computation with minimal data movement

 Compute where it makes sense (where data resides)

 Make computing architectures more data-centric
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Processing Inside Memory

ry

Processor t Database

Graphs

o
|
|
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|
|

! Media

Interconneét
Results Problem

- Many questions ... How do we design the: Program/Language
— compute-capable memory & controllers?
— processor chip?
— Software and hardware interfaces?

— system software and languages?
— algorithms?

System Software
SW/HW Interface




Why In-Memory Computation Today?

e Pull from Systems and Applications
— Data access is a major system and application bottleneck
— Systems are energy limited

— Data movement much more energy-hungry than
computation
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Two Approaches to In-Memory Processing

| 1. Minimally change DRAM to enable simple yet
powerful computation primitives
— Rowlione: Fast and IClent 1n-DKRAIV COpy and Initialization o bu dala
(Seshadri et al., MICRO 2013)
— Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

— Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of
Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

e 2. Exploit the control logic in 3D-stacked memory to
enable more comprehensive computation near
memory

— PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory
Architecture (Ahn et al., ISCA 2015)

— A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing (Ahn et al.,
ISCA 2015)

— Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms,
Evaluation (Hsieh et al., ICCD 2016)
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://people.inf.ethz.ch/omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
https://people.inf.ethz.ch/omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf

Approach 1: Minimally Changing DRAM

 DRAM has great capability to perform bulk data movement and
computation internally with small changes
— Can exploit internal bandwidth to move data
— Can exploit analog computation capability

* Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM

— RowClone: Fast and Efficient In-DRAM Copy and Initialization of
Bulk Data (Seshadri et al.,, MICRO 2013)
— Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

— Gather-Scatter DRAM: In-DRAM Address Translation to Improve the
Spatial Locality of Non-unit Strided Accesses (Seshadri et al.,, MICRO

2015)
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf

Starting Simple: Data Copy and Initialization

Bulk Data
Copy

Bulk Data
Initialization




Bulk Data Copy and Initialization

The Impact of Architectural Trends on Operating System Performance

Mendel Rosenblum, Edouard Bugnion, Stephen Alan Hermrod,
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Bulk Data Copy and Initialization

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’I5]

00000

00000
00000

Zero initialization ' '

Forking (¢ g., security) Checkpointing

Many more

Page Migration
Deduplication
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Today’s Systems: Bulk Data Copy

1) High latency
3) Cache pollution \

2) High bandwidth utilization

4) Unwanted data movement

1046ns, 3.6ul (for 4KB page copy via DMA)
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Future Systems: In-Memory Copy

3) No cache pollution 1) Low latency

2) Low bandwidth utilization
4) No unwanted data movement

1046ns, 3.6u) —=> 90ns, 0.04ul _



RowClone: In-DRAM Row Copy

Transfer
row

Transfer
row

4 Kbytes

Idea: Two consecutive ACTivates

Negligible HW cost

Step 1: Activate row A

Step 2: Activate row B

DRAM subarray

Row Buffer (4 Kbytes)

Data Bus



RowClone: Intra-Subarray
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RowClone: Intra-Subarray (1I)

Row Buffer

1. Activate src row (copy data from src to row buffer)

7

\_

2. Activate dst row (disconnect src from row buffer,
connect dst — copy data from row buffer to dst)

~\




RowClone: Inter-Bank
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Generalized RowClone 0.01% area cost

Inter Subarray Copy
(Use Inter-Bank Copy Twice)
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RowClone: Fast Row Initialization

v

Fix a row at Zero
(0.5% loss in capacity)
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RowClone: Bulk Initialization

* |nitialization with arbitrary data
— Initialize one row
— Copy the data to other rows

e Zero initialization (most common)
— Reserve a row in each subarray (always zero)
— Copy data from reserved row (FPM mode)
— 6.0X lower latency, 41.5X lower DRAM energy
— 0.2% loss in capacity
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RowClone: Latency & Energy Benefits

Latency Reduction Energy Reduction

iézl T 11.6X go (44X
41.5x
10 6.0x 60
8 40
° 1.9x { 20
Lzl_ 7 1.0x 3.2x 1.5x
0 H - 0 N S

Very low cost: 0.01% increase in die area

J

| Co Zero
Copy ‘ Zero ‘ ‘ Py ‘ ‘
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Copy and Initialization in Workloads

B Read

W Zero H Copy m Write
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bootup compile forkbench mcached mysql shell
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RowClone: Application Performance

m [PC Improvement ® Energy Reduction

% Compared to Baseline

bootup compile forkbench mcached mysql shell
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End-to-End System Design

- How to communicate
Application occurrences of bulk
copy/initialization across
: ?

Operating System layers:

How to ensure cache
coherence?

How to maximize latency and

Microarchitecture :
energy savings?

DRAM (RowClone) How to handle data reuse?
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Ambit

In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri

Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu,
Phillip B. Gibbons, Todd C. Mowry

SAFARI (CarnegieMellon (intelﬁ)
B Microsoft  ETH ziricn



Executive Summary

* Problem: Bulk bitwise operations
— present in many applications, e.g., databases, search filters
— existing systems are memory bandwidth limited

e Our Proposal: Ambit
— perform bulk bitwise operations completely inside DRAM

— bulk bitwise AND/OR: simultaneous activation of three
rows

— bulk bitwise NOT: inverters already in sense amplifiers
— less than 1% area overhead over existing DRAM chips

e Results compared to state-of-the-art baseline

— average across seven bulk bitwise operations
e 32X performance improvement, 35X energy reduction

— 3X-7X performance for real-world data-intensive

applications -0



BitWeaving
(database queries)

Bitmap indices
(database indexing)

BitFunnel

Bulk Bitwise (web search)

Set operations Operations

DNA
sequence mapping

Encryption algorithms
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Today, DRAM is just a storage device!

wiite

 Channel ¥ DRaw

Throughput of bulk bitwise operations
limited by available memory bandwidth
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Our Approach

L Channet ¥ oram

Use analog operation of DRAM to perform
bitwise operations completely inside
memory!

73



Inside a DRAM Chip
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DRAM Cell Operation

wordline
capacitor
v access
transistor
enable

bitline

bitline
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DRAM Cell Operation deviation in
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Triple-Row Activation: Majority Function

i) W+ O
activate v
all three a
rows
T e
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Bitwise AND/OR Using Triple-Row Activation

A ]




Bitwise AND/OR Using Triple-Row Activation

1 ————————— Vpp

A ‘ ‘ Output = AB + BC + CA
1 — = C(AORB) +
- =
~C (A AND B)
B BN D E—
l \
1 ——Y Control the value of C to
|| perform bitwise OR or
C N\B

38X improvement in raw throughput
1 - 44X reduction in energy consumption
_ for bulk bitwise AND/OR operations
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Bulk Bitwise AND/OR in DRAM

Statically reserve three designated rows t1, t2, and t3

Result = row A AND/OR row B
1. CopydatataefadwoAitdi\row td

CapywdatatafadwcBit Brow t2

MICRO 2013

2
3
4. RowClone: Fast and Energy-Efficient
. In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin® Donghyuk Lee
vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuk1@cmu.edu

Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo
rachata@cmu.edu gpekhime@cs.cmu.edu  yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbons' Michael A. Kozucht Todd C. Mowry
onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

Carnegie Mellon University fIntel Pittsburgh




Bulk Bitwise AND/OR in DRAM

Statically reserve three designated rows t1, t2, and t3

Result = row A AND/OR row B

1. GoRdwoot e Affowdwittow tl

2. CGxpRdetdont e Bfto waiit2ow t2

3. hithidibz8 vt of deiw ¢8rbar031o 0/1

4. Actiebteonovid AP/t2/t3 siandearigously

5. GaRdwtont o tT A2/13 /t3/ResuResolivrow

Use RowClone to perform copy and
initialization operations completely in DRAM!

81



Negation Using the Sense Amplifier

Can we copy the

negated value from
bitline to a DRAM cell?

enable /

bitline

itine
82




Negation Using the Sense Amplifier

Dual Contact Cell

Regular wordline

!

Negation wordline———— bitline

L

1

enable




Negation Using the Sense Amplifier

activate ) I 1%"' o

source ‘ ‘
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Ambit vs. DDR3: Performance and Energy

B Performance Improvement B Energy Reduction
70

60

. 32x 35x
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Integrating Ambit with the System
1. PCle device

— Similar to other accelerators (e.g., GPU)

2. System memory bus

— Ambit uses the same DRAM command/address
interface

Pros and cons discussed in paper
(Section 5.4)
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Real-world Applications
* Methodology (Gem5 simulator)

— Processor: x86, 4 GHz, out-of-order, 64-entry instruction
gueue

— L1 cache: 32 KB D-cache and 32 KB I-cache, LRU policy
— L2 cache: 2 MB, LRU policy

— Memory controller: FR-FCFS, 8 KB row size

— Main memory: DDR4-2400, 1 channel, 1 rank, 8 bank

e Workloads

— Database bitmap indices
— BitWeaving —column scans using bulk bitwise operations

— Set operations — comparing bitvectors with red-black trees
87



Bitmap Indices: Performance
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L 100 6.2X
ch 80
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Consistent reduction in execution time. 6X on average




Speedup offered by Ambit for BitWeaving
select count(*) where cl1l < field < c2

Number of rows in the database table
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Review #5

Flipping Bits in Memory Without

Accessing Them
Yoongu Kim et al., ISCA 2014
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https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
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